This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphnmval.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| tcphnmval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| tcphnmval.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| Assertion | tchnmfval | ⊢ ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphnmval.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | tcphnmval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | tcphnmval.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) | |
| 6 | fvrn0 | ⊢ ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } ) | |
| 7 | 6 | a1i | ⊢ ( 𝑥 ∈ 𝑉 → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ( ran √ ∪ { ∅ } ) ) |
| 8 | 5 7 | fmpti | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } ) |
| 9 | 1 3 4 | tcphval | ⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 10 | cnex | ⊢ ℂ ∈ V | |
| 11 | sqrtf | ⊢ √ : ℂ ⟶ ℂ | |
| 12 | frn | ⊢ ( √ : ℂ ⟶ ℂ → ran √ ⊆ ℂ ) | |
| 13 | 11 12 | ax-mp | ⊢ ran √ ⊆ ℂ |
| 14 | 10 13 | ssexi | ⊢ ran √ ∈ V |
| 15 | p0ex | ⊢ { ∅ } ∈ V | |
| 16 | 14 15 | unex | ⊢ ( ran √ ∪ { ∅ } ) ∈ V |
| 17 | 9 3 16 | tngnm | ⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ( ran √ ∪ { ∅ } ) ) → ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( norm ‘ 𝐺 ) ) |
| 18 | 8 17 | mpan2 | ⊢ ( 𝑊 ∈ Grp → ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( norm ‘ 𝐺 ) ) |
| 19 | 2 18 | eqtr4id | ⊢ ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |