This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by NM, 16-Dec-2005) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expge0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴 ) → 0 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑧 = 𝐴 → ( 0 ≤ 𝑧 ↔ 0 ≤ 𝐴 ) ) | |
| 2 | 1 | elrab | ⊢ ( 𝐴 ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 3 | ssrab2 | ⊢ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ⊆ ℝ | |
| 4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 5 | 3 4 | sstri | ⊢ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ⊆ ℂ |
| 6 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 0 ≤ 𝑧 ↔ 0 ≤ 𝑥 ) ) | |
| 7 | 6 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 8 | breq2 | ⊢ ( 𝑧 = 𝑦 → ( 0 ≤ 𝑧 ↔ 0 ≤ 𝑦 ) ) | |
| 9 | 8 | elrab | ⊢ ( 𝑦 ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) |
| 10 | breq2 | ⊢ ( 𝑧 = ( 𝑥 · 𝑦 ) → ( 0 ≤ 𝑧 ↔ 0 ≤ ( 𝑥 · 𝑦 ) ) ) | |
| 11 | remulcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) | |
| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 13 | mulge0 | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) → 0 ≤ ( 𝑥 · 𝑦 ) ) | |
| 14 | 10 12 13 | elrabd | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) → ( 𝑥 · 𝑦 ) ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ) |
| 15 | 7 9 14 | syl2anb | ⊢ ( ( 𝑥 ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ∧ 𝑦 ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ) → ( 𝑥 · 𝑦 ) ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ) |
| 16 | 1re | ⊢ 1 ∈ ℝ | |
| 17 | 0le1 | ⊢ 0 ≤ 1 | |
| 18 | breq2 | ⊢ ( 𝑧 = 1 → ( 0 ≤ 𝑧 ↔ 0 ≤ 1 ) ) | |
| 19 | 18 | elrab | ⊢ ( 1 ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ↔ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) |
| 20 | 16 17 19 | mpbir2an | ⊢ 1 ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } |
| 21 | 5 15 20 | expcllem | ⊢ ( ( 𝐴 ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ) |
| 22 | breq2 | ⊢ ( 𝑧 = ( 𝐴 ↑ 𝑁 ) → ( 0 ≤ 𝑧 ↔ 0 ≤ ( 𝐴 ↑ 𝑁 ) ) ) | |
| 23 | 22 | elrab | ⊢ ( ( 𝐴 ↑ 𝑁 ) ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ↔ ( ( 𝐴 ↑ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 𝑁 ) ) ) |
| 24 | 23 | simprbi | ⊢ ( ( 𝐴 ↑ 𝑁 ) ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } → 0 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 25 | 21 24 | syl | ⊢ ( ( 𝐴 ∈ { 𝑧 ∈ ℝ ∣ 0 ≤ 𝑧 } ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 26 | 2 25 | sylanbr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 27 | 26 | 3impa | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝐴 ↑ 𝑁 ) ) |
| 28 | 27 | 3com23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝐴 ) → 0 ≤ ( 𝐴 ↑ 𝑁 ) ) |