This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifle | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) → if ( 𝜑 , 𝐴 , 𝐵 ) ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll1 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → 𝐴 ∈ ℝ ) | |
| 2 | 1 | leidd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → 𝐴 ≤ 𝐴 ) |
| 3 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 4 | 3 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) |
| 5 | id | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 6 | 5 | imp | ⊢ ( ( ( 𝜑 → 𝜓 ) ∧ 𝜑 ) → 𝜓 ) |
| 7 | 6 | adantll | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → 𝜓 ) |
| 8 | 7 | iftrued | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 ) |
| 9 | 2 4 8 | 3brtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| 10 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 11 | 10 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) |
| 12 | simpll3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → 𝐵 ≤ 𝐴 ) | |
| 13 | simpll2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → 𝐵 ∈ ℝ ) | |
| 14 | 13 | leidd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → 𝐵 ≤ 𝐵 ) |
| 15 | breq2 | ⊢ ( 𝐴 = if ( 𝜓 , 𝐴 , 𝐵 ) → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) ) | |
| 16 | breq2 | ⊢ ( 𝐵 = if ( 𝜓 , 𝐴 , 𝐵 ) → ( 𝐵 ≤ 𝐵 ↔ 𝐵 ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) ) | |
| 17 | 15 16 | ifboth | ⊢ ( ( 𝐵 ≤ 𝐴 ∧ 𝐵 ≤ 𝐵 ) → 𝐵 ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| 18 | 12 14 17 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → 𝐵 ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| 19 | 11 18 | eqbrtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) ∧ ¬ 𝜑 ) → if ( 𝜑 , 𝐴 , 𝐵 ) ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| 20 | 9 19 | pm2.61dan | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴 ) ∧ ( 𝜑 → 𝜓 ) ) → if ( 𝜑 , 𝐴 , 𝐵 ) ≤ if ( 𝜓 , 𝐴 , 𝐵 ) ) |