This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| rnglidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | ||
| rnglidlabl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rnglidlmsgrp | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| 2 | rnglidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | |
| 3 | rnglidlabl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 2 3 | rnglidlmmgm | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm ) |
| 5 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 6 | 5 | rngmgp | ⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
| 8 | 1 2 | lidlssbas | ⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 9 | 8 | sseld | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 10 | 8 | sseld | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ∈ ( Base ‘ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 11 | 8 | sseld | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑐 ∈ ( Base ‘ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
| 12 | 9 10 11 | 3anim123d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | 5 15 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 17 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 18 | 5 17 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 19 | 16 18 | sgrpass | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
| 20 | 7 14 19 | syl2an2r | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
| 21 | 2 17 | ressmulr | ⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
| 22 | 21 | eqcomd | ⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
| 23 | 22 | oveqd | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
| 24 | eqidd | ⊢ ( 𝑈 ∈ 𝐿 → 𝑐 = 𝑐 ) | |
| 25 | 22 23 24 | oveq123d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) ) |
| 26 | eqidd | ⊢ ( 𝑈 ∈ 𝐿 → 𝑎 = 𝑎 ) | |
| 27 | 22 | oveqd | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) |
| 28 | 22 26 27 | oveq123d | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
| 29 | 25 28 | eqeq12d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
| 30 | 29 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
| 32 | 20 31 | mpbird | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) |
| 33 | 32 | ralrimivvva | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) |
| 34 | eqid | ⊢ ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 ) | |
| 35 | eqid | ⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) | |
| 36 | 34 35 | mgpbas | ⊢ ( Base ‘ 𝐼 ) = ( Base ‘ ( mulGrp ‘ 𝐼 ) ) |
| 37 | eqid | ⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) | |
| 38 | 34 37 | mgpplusg | ⊢ ( .r ‘ 𝐼 ) = ( +g ‘ ( mulGrp ‘ 𝐼 ) ) |
| 39 | 36 38 | issgrp | ⊢ ( ( mulGrp ‘ 𝐼 ) ∈ Smgrp ↔ ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) |
| 40 | 4 33 39 | sylanbrc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp ) |