This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption U e. ( SubGrpR ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| rnglidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | ||
| Assertion | rnglidlrng | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| 2 | rnglidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | |
| 3 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
| 5 | simp3 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 6 | 2 | subgabl | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Abel ) |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Abel ) |
| 8 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 9 | 8 | subg0cl | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑈 ) |
| 10 | 1 2 8 | rnglidlmsgrp | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ ( 0g ‘ 𝑅 ) ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp ) |
| 11 | 9 10 | syl3an3 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → ( mulGrp ‘ 𝐼 ) ∈ Smgrp ) |
| 12 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑅 ∈ Rng ) | |
| 13 | 1 2 | lidlssbas | ⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 14 | 13 | sseld | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 15 | 13 | sseld | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ∈ ( Base ‘ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 16 | 13 | sseld | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑐 ∈ ( Base ‘ 𝐼 ) → 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
| 17 | 14 15 16 | 3anim123d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) ) |
| 19 | 18 | imp | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) |
| 20 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 21 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 22 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 23 | 20 21 22 | rngdi | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
| 24 | 12 19 23 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
| 25 | 20 21 22 | rngdir | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ∧ 𝑐 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
| 26 | 12 19 25 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
| 27 | 2 22 | ressmulr | ⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
| 28 | 27 | eqcomd | ⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
| 29 | eqidd | ⊢ ( 𝑈 ∈ 𝐿 → 𝑎 = 𝑎 ) | |
| 30 | 2 21 | ressplusg | ⊢ ( 𝑈 ∈ 𝐿 → ( +g ‘ 𝑅 ) = ( +g ‘ 𝐼 ) ) |
| 31 | 30 | eqcomd | ⊢ ( 𝑈 ∈ 𝐿 → ( +g ‘ 𝐼 ) = ( +g ‘ 𝑅 ) ) |
| 32 | 31 | oveqd | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) = ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) |
| 33 | 28 29 32 | oveq123d | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) ) |
| 34 | 28 | oveqd | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
| 35 | 28 | oveqd | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) |
| 36 | 31 34 35 | oveq123d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
| 37 | 33 36 | eqeq12d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
| 38 | 31 | oveqd | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 39 | eqidd | ⊢ ( 𝑈 ∈ 𝐿 → 𝑐 = 𝑐 ) | |
| 40 | 28 38 39 | oveq123d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) ) |
| 41 | 28 | oveqd | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) = ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) |
| 42 | 31 35 41 | oveq123d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) |
| 43 | 40 42 | eqeq12d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ↔ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) |
| 44 | 37 43 | anbi12d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
| 45 | 44 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ↔ ( ( 𝑎 ( .r ‘ 𝑅 ) ( 𝑏 ( +g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ( .r ‘ 𝑅 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝑅 ) 𝑐 ) ( +g ‘ 𝑅 ) ( 𝑏 ( .r ‘ 𝑅 ) 𝑐 ) ) ) ) ) |
| 47 | 24 26 46 | mpbir2and | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ∧ 𝑐 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) |
| 48 | 47 | ralrimivvva | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) |
| 49 | eqid | ⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) | |
| 50 | eqid | ⊢ ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 ) | |
| 51 | eqid | ⊢ ( +g ‘ 𝐼 ) = ( +g ‘ 𝐼 ) | |
| 52 | eqid | ⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) | |
| 53 | 49 50 51 52 | isrng | ⊢ ( 𝐼 ∈ Rng ↔ ( 𝐼 ∈ Abel ∧ ( mulGrp ‘ 𝐼 ) ∈ Smgrp ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ∀ 𝑐 ∈ ( Base ‘ 𝐼 ) ( ( 𝑎 ( .r ‘ 𝐼 ) ( 𝑏 ( +g ‘ 𝐼 ) 𝑐 ) ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ( +g ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐼 ) 𝑏 ) ( .r ‘ 𝐼 ) 𝑐 ) = ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑐 ) ( +g ‘ 𝐼 ) ( 𝑏 ( .r ‘ 𝐼 ) 𝑐 ) ) ) ) ) |
| 54 | 7 11 48 53 | syl3anbrc | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐼 ∈ Rng ) |