This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidlabl.l | |- L = ( LIdeal ` R ) |
|
| rnglidlabl.i | |- I = ( R |`s U ) |
||
| rnglidlabl.z | |- .0. = ( 0g ` R ) |
||
| Assertion | rnglidlmsgrp | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Smgrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlabl.l | |- L = ( LIdeal ` R ) |
|
| 2 | rnglidlabl.i | |- I = ( R |`s U ) |
|
| 3 | rnglidlabl.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 2 3 | rnglidlmmgm | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Mgm ) |
| 5 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 6 | 5 | rngmgp | |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) |
| 7 | 6 | 3ad2ant1 | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` R ) e. Smgrp ) |
| 8 | 1 2 | lidlssbas | |- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |
| 9 | 8 | sseld | |- ( U e. L -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
| 10 | 8 | sseld | |- ( U e. L -> ( b e. ( Base ` I ) -> b e. ( Base ` R ) ) ) |
| 11 | 8 | sseld | |- ( U e. L -> ( c e. ( Base ` I ) -> c e. ( Base ` R ) ) ) |
| 12 | 9 10 11 | 3anim123d | |- ( U e. L -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
| 13 | 12 | 3ad2ant2 | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) ) |
| 14 | 13 | imp | |- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | 5 15 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 17 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 18 | 5 17 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 19 | 16 18 | sgrpass | |- ( ( ( mulGrp ` R ) e. Smgrp /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) |
| 20 | 7 14 19 | syl2an2r | |- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) |
| 21 | 2 17 | ressmulr | |- ( U e. L -> ( .r ` R ) = ( .r ` I ) ) |
| 22 | 21 | eqcomd | |- ( U e. L -> ( .r ` I ) = ( .r ` R ) ) |
| 23 | 22 | oveqd | |- ( U e. L -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) ) |
| 24 | eqidd | |- ( U e. L -> c = c ) |
|
| 25 | 22 23 24 | oveq123d | |- ( U e. L -> ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( ( a ( .r ` R ) b ) ( .r ` R ) c ) ) |
| 26 | eqidd | |- ( U e. L -> a = a ) |
|
| 27 | 22 | oveqd | |- ( U e. L -> ( b ( .r ` I ) c ) = ( b ( .r ` R ) c ) ) |
| 28 | 22 26 27 | oveq123d | |- ( U e. L -> ( a ( .r ` I ) ( b ( .r ` I ) c ) ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) |
| 29 | 25 28 | eqeq12d | |- ( U e. L -> ( ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) ) |
| 30 | 29 | 3ad2ant2 | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) ) |
| 31 | 30 | adantr | |- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) <-> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) ) |
| 32 | 20 31 | mpbird | |- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) /\ c e. ( Base ` I ) ) ) -> ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) |
| 33 | 32 | ralrimivvva | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) |
| 34 | eqid | |- ( mulGrp ` I ) = ( mulGrp ` I ) |
|
| 35 | eqid | |- ( Base ` I ) = ( Base ` I ) |
|
| 36 | 34 35 | mgpbas | |- ( Base ` I ) = ( Base ` ( mulGrp ` I ) ) |
| 37 | eqid | |- ( .r ` I ) = ( .r ` I ) |
|
| 38 | 34 37 | mgpplusg | |- ( .r ` I ) = ( +g ` ( mulGrp ` I ) ) |
| 39 | 36 38 | issgrp | |- ( ( mulGrp ` I ) e. Smgrp <-> ( ( mulGrp ` I ) e. Mgm /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) ) |
| 40 | 4 33 39 | sylanbrc | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Smgrp ) |