This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| rnglidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | ||
| rnglidlabl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rnglidlmmgm | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlabl.l | ⊢ 𝐿 = ( LIdeal ‘ 𝑅 ) | |
| 2 | rnglidlabl.i | ⊢ 𝐼 = ( 𝑅 ↾s 𝑈 ) | |
| 3 | rnglidlabl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | simp1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → 𝑅 ∈ Rng ) | |
| 5 | 1 2 | lidlbas | ⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) = 𝑈 ) |
| 6 | eleq1a | ⊢ ( 𝑈 ∈ 𝐿 → ( ( Base ‘ 𝐼 ) = 𝑈 → ( Base ‘ 𝐼 ) ∈ 𝐿 ) ) | |
| 7 | 5 6 | mpd | ⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ∈ 𝐿 ) |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( Base ‘ 𝐼 ) ∈ 𝐿 ) |
| 9 | 5 | eqcomd | ⊢ ( 𝑈 ∈ 𝐿 → 𝑈 = ( Base ‘ 𝐼 ) ) |
| 10 | 9 | eleq2d | ⊢ ( 𝑈 ∈ 𝐿 → ( 0 ∈ 𝑈 ↔ 0 ∈ ( Base ‘ 𝐼 ) ) ) |
| 11 | 10 | biimpa | ⊢ ( ( 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → 0 ∈ ( Base ‘ 𝐼 ) ) |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → 0 ∈ ( Base ‘ 𝐼 ) ) |
| 13 | 4 8 12 | 3jca | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐼 ) ∈ 𝐿 ∧ 0 ∈ ( Base ‘ 𝐼 ) ) ) |
| 14 | 1 2 | lidlssbas | ⊢ ( 𝑈 ∈ 𝐿 → ( Base ‘ 𝐼 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 15 | 14 | sseld | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( 𝑎 ∈ ( Base ‘ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑅 ) ) ) |
| 17 | 16 | anim1d | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) ) |
| 18 | 17 | imp | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 20 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 21 | 3 19 20 1 | rnglidlmcl | ⊢ ( ( ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐼 ) ∈ 𝐿 ∧ 0 ∈ ( Base ‘ 𝐼 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑅 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
| 22 | 13 18 21 | syl2an2r | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
| 23 | 2 20 | ressmulr | ⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝑅 ) = ( .r ‘ 𝐼 ) ) |
| 24 | 23 | eqcomd | ⊢ ( 𝑈 ∈ 𝐿 → ( .r ‘ 𝐼 ) = ( .r ‘ 𝑅 ) ) |
| 25 | 24 | oveqd | ⊢ ( 𝑈 ∈ 𝐿 → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) = ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) |
| 26 | 25 | eleq1d | ⊢ ( 𝑈 ∈ 𝐿 → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ↔ ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
| 29 | 22 28 | mpbird | ⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ 𝐼 ) ∧ 𝑏 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
| 30 | 29 | ralrimivva | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) |
| 31 | fvex | ⊢ ( mulGrp ‘ 𝐼 ) ∈ V | |
| 32 | eqid | ⊢ ( mulGrp ‘ 𝐼 ) = ( mulGrp ‘ 𝐼 ) | |
| 33 | eqid | ⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) | |
| 34 | 32 33 | mgpbas | ⊢ ( Base ‘ 𝐼 ) = ( Base ‘ ( mulGrp ‘ 𝐼 ) ) |
| 35 | eqid | ⊢ ( .r ‘ 𝐼 ) = ( .r ‘ 𝐼 ) | |
| 36 | 32 35 | mgpplusg | ⊢ ( .r ‘ 𝐼 ) = ( +g ‘ ( mulGrp ‘ 𝐼 ) ) |
| 37 | 34 36 | ismgm | ⊢ ( ( mulGrp ‘ 𝐼 ) ∈ V → ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
| 38 | 31 37 | mp1i | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( ( mulGrp ‘ 𝐼 ) ∈ Mgm ↔ ∀ 𝑎 ∈ ( Base ‘ 𝐼 ) ∀ 𝑏 ∈ ( Base ‘ 𝐼 ) ( 𝑎 ( .r ‘ 𝐼 ) 𝑏 ) ∈ ( Base ‘ 𝐼 ) ) ) |
| 39 | 30 38 | mpbird | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈 ) → ( mulGrp ‘ 𝐼 ) ∈ Mgm ) |