This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidlabl.l | |- L = ( LIdeal ` R ) |
|
| rnglidlabl.i | |- I = ( R |`s U ) |
||
| rnglidlabl.z | |- .0. = ( 0g ` R ) |
||
| Assertion | rnglidlmmgm | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Mgm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlabl.l | |- L = ( LIdeal ` R ) |
|
| 2 | rnglidlabl.i | |- I = ( R |`s U ) |
|
| 3 | rnglidlabl.z | |- .0. = ( 0g ` R ) |
|
| 4 | simp1 | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> R e. Rng ) |
|
| 5 | 1 2 | lidlbas | |- ( U e. L -> ( Base ` I ) = U ) |
| 6 | eleq1a | |- ( U e. L -> ( ( Base ` I ) = U -> ( Base ` I ) e. L ) ) |
|
| 7 | 5 6 | mpd | |- ( U e. L -> ( Base ` I ) e. L ) |
| 8 | 7 | 3ad2ant2 | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( Base ` I ) e. L ) |
| 9 | 5 | eqcomd | |- ( U e. L -> U = ( Base ` I ) ) |
| 10 | 9 | eleq2d | |- ( U e. L -> ( .0. e. U <-> .0. e. ( Base ` I ) ) ) |
| 11 | 10 | biimpa | |- ( ( U e. L /\ .0. e. U ) -> .0. e. ( Base ` I ) ) |
| 12 | 11 | 3adant1 | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> .0. e. ( Base ` I ) ) |
| 13 | 4 8 12 | 3jca | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( R e. Rng /\ ( Base ` I ) e. L /\ .0. e. ( Base ` I ) ) ) |
| 14 | 1 2 | lidlssbas | |- ( U e. L -> ( Base ` I ) C_ ( Base ` R ) ) |
| 15 | 14 | sseld | |- ( U e. L -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
| 16 | 15 | 3ad2ant2 | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( a e. ( Base ` I ) -> a e. ( Base ` R ) ) ) |
| 17 | 16 | anim1d | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) ) |
| 18 | 17 | imp | |- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) |
| 19 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 20 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 21 | 3 19 20 1 | rnglidlmcl | |- ( ( ( R e. Rng /\ ( Base ` I ) e. L /\ .0. e. ( Base ` I ) ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` I ) ) |
| 22 | 13 18 21 | syl2an2r | |- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` R ) b ) e. ( Base ` I ) ) |
| 23 | 2 20 | ressmulr | |- ( U e. L -> ( .r ` R ) = ( .r ` I ) ) |
| 24 | 23 | eqcomd | |- ( U e. L -> ( .r ` I ) = ( .r ` R ) ) |
| 25 | 24 | oveqd | |- ( U e. L -> ( a ( .r ` I ) b ) = ( a ( .r ` R ) b ) ) |
| 26 | 25 | eleq1d | |- ( U e. L -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) |
| 27 | 26 | 3ad2ant2 | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) |
| 28 | 27 | adantr | |- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( ( a ( .r ` I ) b ) e. ( Base ` I ) <-> ( a ( .r ` R ) b ) e. ( Base ` I ) ) ) |
| 29 | 22 28 | mpbird | |- ( ( ( R e. Rng /\ U e. L /\ .0. e. U ) /\ ( a e. ( Base ` I ) /\ b e. ( Base ` I ) ) ) -> ( a ( .r ` I ) b ) e. ( Base ` I ) ) |
| 30 | 29 | ralrimivva | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) |
| 31 | fvex | |- ( mulGrp ` I ) e. _V |
|
| 32 | eqid | |- ( mulGrp ` I ) = ( mulGrp ` I ) |
|
| 33 | eqid | |- ( Base ` I ) = ( Base ` I ) |
|
| 34 | 32 33 | mgpbas | |- ( Base ` I ) = ( Base ` ( mulGrp ` I ) ) |
| 35 | eqid | |- ( .r ` I ) = ( .r ` I ) |
|
| 36 | 32 35 | mgpplusg | |- ( .r ` I ) = ( +g ` ( mulGrp ` I ) ) |
| 37 | 34 36 | ismgm | |- ( ( mulGrp ` I ) e. _V -> ( ( mulGrp ` I ) e. Mgm <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) ) |
| 38 | 31 37 | mp1i | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( ( mulGrp ` I ) e. Mgm <-> A. a e. ( Base ` I ) A. b e. ( Base ` I ) ( a ( .r ` I ) b ) e. ( Base ` I ) ) ) |
| 39 | 30 38 | mpbird | |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Mgm ) |