This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then both rings are unital. (Contributed by AV, 27-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngisomring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝑆 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝑆 ∈ Rng ) | |
| 2 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 4 | 2 3 | rngisomfv1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 6 | oveq1 | ⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ↔ ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ) ) |
| 8 | oveq2 | ⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ↔ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ↔ ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ 𝑖 = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ) |
| 13 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 14 | 2 3 13 | rngisom1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) |
| 15 | 5 12 14 | rspcedvd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ∃ 𝑖 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ) |
| 16 | 3 13 | isringrng | ⊢ ( 𝑆 ∈ Ring ↔ ( 𝑆 ∈ Rng ∧ ∃ 𝑖 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝑖 ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) 𝑖 ) = 𝑥 ) ) ) |
| 17 | 1 15 16 | sylanbrc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝑆 ∈ Ring ) |