This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the ring unity of the second ring is the function value of the ring unity of the first ring for the isomorphism. (Contributed by AV, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rngisomring1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 1r ‘ 𝑆 ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 3 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 4 | 1 2 3 | rngisom1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) |
| 5 | eqidd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) | |
| 6 | eqidd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | 7 2 | rngimf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) ) |
| 9 | f1of | ⊢ ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ ( Base ‘ 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 12 | 7 1 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 14 | 11 13 | ffvelcdmd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) ) | |
| 17 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ↔ ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ) ) |
| 19 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) ) | |
| 20 | 19 17 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ↔ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) |
| 21 | 18 20 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ↔ ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) ) |
| 22 | 21 | rspccv | ⊢ ( ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) ) |
| 23 | 22 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) ) |
| 24 | simpl | ⊢ ( ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ) | |
| 25 | 23 24 | syl6 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ) ) |
| 26 | 25 | imp | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ) |
| 27 | simpr | ⊢ ( ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) | |
| 28 | 23 27 | syl6 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) ) |
| 29 | 28 | imp | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑦 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑦 ) |
| 30 | 5 6 15 26 29 | ringurd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) = 𝑥 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 31 | 4 30 | mpdan | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 32 | 31 | eqcomd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ Rng ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 1r ‘ 𝑆 ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |