This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a non-unital ring isomorphism between a unital ring and a non-unital ring, then the function value of the ring unity of the unital ring is an element of the base set of the non-unital ring. (Contributed by AV, 27-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngisom1.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| rngisom1.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | rngisomfv1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisom1.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 2 | rngisom1.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 3 2 | rngimf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 ) |
| 5 | f1of | ⊢ ( 𝐹 : ( Base ‘ 𝑅 ) –1-1-onto→ 𝐵 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
| 8 | 3 1 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 10 | 7 9 | ffvelcdmd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝐵 ) |