This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsubcrngc.c | |- C = ( RngCat ` U ) |
|
| rhmsubcrngc.u | |- ( ph -> U e. V ) |
||
| rhmsubcrngc.b | |- ( ph -> B = ( Ring i^i U ) ) |
||
| rhmsubcrngc.h | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
||
| Assertion | rngcresringcat | |- ( ph -> ( C |`cat H ) = ( RingCat ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | |- C = ( RngCat ` U ) |
|
| 2 | rhmsubcrngc.u | |- ( ph -> U e. V ) |
|
| 3 | rhmsubcrngc.b | |- ( ph -> B = ( Ring i^i U ) ) |
|
| 4 | rhmsubcrngc.h | |- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
|
| 5 | eqidd | |- ( ph -> ( U i^i Rng ) = ( U i^i Rng ) ) |
|
| 6 | eqidd | |- ( ph -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) = ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) |
|
| 7 | eqidd | |- ( ph -> ( comp ` ( ExtStrCat ` U ) ) = ( comp ` ( ExtStrCat ` U ) ) ) |
|
| 8 | 1 2 5 6 7 | dfrngc2 | |- ( ph -> C = { <. ( Base ` ndx ) , ( U i^i Rng ) >. , <. ( Hom ` ndx ) , ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) >. , <. ( comp ` ndx ) , ( comp ` ( ExtStrCat ` U ) ) >. } ) |
| 9 | inex1g | |- ( U e. V -> ( U i^i Rng ) e. _V ) |
|
| 10 | 2 9 | syl | |- ( ph -> ( U i^i Rng ) e. _V ) |
| 11 | rnghmfn | |- RngHom Fn ( Rng X. Rng ) |
|
| 12 | fnfun | |- ( RngHom Fn ( Rng X. Rng ) -> Fun RngHom ) |
|
| 13 | 11 12 | mp1i | |- ( ph -> Fun RngHom ) |
| 14 | sqxpexg | |- ( ( U i^i Rng ) e. _V -> ( ( U i^i Rng ) X. ( U i^i Rng ) ) e. _V ) |
|
| 15 | 10 14 | syl | |- ( ph -> ( ( U i^i Rng ) X. ( U i^i Rng ) ) e. _V ) |
| 16 | resfunexg | |- ( ( Fun RngHom /\ ( ( U i^i Rng ) X. ( U i^i Rng ) ) e. _V ) -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) e. _V ) |
|
| 17 | 13 15 16 | syl2anc | |- ( ph -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) e. _V ) |
| 18 | fvexd | |- ( ph -> ( comp ` ( ExtStrCat ` U ) ) e. _V ) |
|
| 19 | rhmfn | |- RingHom Fn ( Ring X. Ring ) |
|
| 20 | fnfun | |- ( RingHom Fn ( Ring X. Ring ) -> Fun RingHom ) |
|
| 21 | 19 20 | mp1i | |- ( ph -> Fun RingHom ) |
| 22 | incom | |- ( Ring i^i U ) = ( U i^i Ring ) |
|
| 23 | 3 22 | eqtrdi | |- ( ph -> B = ( U i^i Ring ) ) |
| 24 | inex1g | |- ( U e. V -> ( U i^i Ring ) e. _V ) |
|
| 25 | 2 24 | syl | |- ( ph -> ( U i^i Ring ) e. _V ) |
| 26 | 23 25 | eqeltrd | |- ( ph -> B e. _V ) |
| 27 | sqxpexg | |- ( B e. _V -> ( B X. B ) e. _V ) |
|
| 28 | 26 27 | syl | |- ( ph -> ( B X. B ) e. _V ) |
| 29 | resfunexg | |- ( ( Fun RingHom /\ ( B X. B ) e. _V ) -> ( RingHom |` ( B X. B ) ) e. _V ) |
|
| 30 | 21 28 29 | syl2anc | |- ( ph -> ( RingHom |` ( B X. B ) ) e. _V ) |
| 31 | 4 30 | eqeltrd | |- ( ph -> H e. _V ) |
| 32 | ringrng | |- ( r e. Ring -> r e. Rng ) |
|
| 33 | 32 | a1i | |- ( ph -> ( r e. Ring -> r e. Rng ) ) |
| 34 | 33 | ssrdv | |- ( ph -> Ring C_ Rng ) |
| 35 | 34 | ssrind | |- ( ph -> ( Ring i^i U ) C_ ( Rng i^i U ) ) |
| 36 | incom | |- ( U i^i Rng ) = ( Rng i^i U ) |
|
| 37 | 36 | a1i | |- ( ph -> ( U i^i Rng ) = ( Rng i^i U ) ) |
| 38 | 35 3 37 | 3sstr4d | |- ( ph -> B C_ ( U i^i Rng ) ) |
| 39 | 8 10 17 18 31 38 | estrres | |- ( ph -> ( ( C |`s B ) sSet <. ( Hom ` ndx ) , H >. ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( comp ` ( ExtStrCat ` U ) ) >. } ) |
| 40 | eqid | |- ( C |`cat H ) = ( C |`cat H ) |
|
| 41 | fvexd | |- ( ph -> ( RngCat ` U ) e. _V ) |
|
| 42 | 1 41 | eqeltrid | |- ( ph -> C e. _V ) |
| 43 | 23 4 | rhmresfn | |- ( ph -> H Fn ( B X. B ) ) |
| 44 | 40 42 26 43 | rescval2 | |- ( ph -> ( C |`cat H ) = ( ( C |`s B ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 45 | eqid | |- ( RingCat ` U ) = ( RingCat ` U ) |
|
| 46 | 45 2 23 4 7 | dfringc2 | |- ( ph -> ( RingCat ` U ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( comp ` ( ExtStrCat ` U ) ) >. } ) |
| 47 | 39 44 46 | 3eqtr4d | |- ( ph -> ( C |`cat H ) = ( RingCat ` U ) ) |