This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfrngc2.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| dfrngc2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| dfrngc2.b | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) | ||
| dfrngc2.h | ⊢ ( 𝜑 → 𝐻 = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) | ||
| dfrngc2.o | ⊢ ( 𝜑 → · = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ) | ||
| Assertion | dfrngc2 | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrngc2.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 2 | dfrngc2.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | dfrngc2.b | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) | |
| 4 | dfrngc2.h | ⊢ ( 𝜑 → 𝐻 = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 5 | dfrngc2.o | ⊢ ( 𝜑 → · = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ) | |
| 6 | 1 2 3 4 | rngcval | ⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat 𝐻 ) ) |
| 7 | eqid | ⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat 𝐻 ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat 𝐻 ) | |
| 8 | fvexd | ⊢ ( 𝜑 → ( ExtStrCat ‘ 𝑈 ) ∈ V ) | |
| 9 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Rng ) ∈ V ) | |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) ∈ V ) |
| 11 | 3 10 | eqeltrd | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 12 | 3 4 | rnghmresfn | ⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |
| 13 | 7 8 11 12 | rescval2 | ⊢ ( 𝜑 → ( ( ExtStrCat ‘ 𝑈 ) ↾cat 𝐻 ) = ( ( ( ExtStrCat ‘ 𝑈 ) ↾s 𝐵 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
| 14 | eqid | ⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) | |
| 15 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) | |
| 16 | eqid | ⊢ ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) | |
| 17 | 14 2 16 | estrccofval | ⊢ ( 𝜑 → ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| 18 | 5 17 | eqtrd | ⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝑈 × 𝑈 ) , 𝑧 ∈ 𝑈 ↦ ( 𝑔 ∈ ( ( Base ‘ 𝑧 ) ↑m ( Base ‘ ( 2nd ‘ 𝑣 ) ) ) , 𝑓 ∈ ( ( Base ‘ ( 2nd ‘ 𝑣 ) ) ↑m ( Base ‘ ( 1st ‘ 𝑣 ) ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| 19 | 14 2 15 18 | estrcval | ⊢ ( 𝜑 → ( ExtStrCat ‘ 𝑈 ) = { 〈 ( Base ‘ ndx ) , 𝑈 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 20 | mpoexga | ⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∈ V ) | |
| 21 | 2 2 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ∈ V ) |
| 22 | fvexd | ⊢ ( 𝜑 → ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ∈ V ) | |
| 23 | 5 22 | eqeltrd | ⊢ ( 𝜑 → · ∈ V ) |
| 24 | rnghmfn | ⊢ RngHom Fn ( Rng × Rng ) | |
| 25 | fnfun | ⊢ ( RngHom Fn ( Rng × Rng ) → Fun RngHom ) | |
| 26 | 24 25 | mp1i | ⊢ ( 𝜑 → Fun RngHom ) |
| 27 | sqxpexg | ⊢ ( 𝐵 ∈ V → ( 𝐵 × 𝐵 ) ∈ V ) | |
| 28 | 11 27 | syl | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ∈ V ) |
| 29 | resfunexg | ⊢ ( ( Fun RngHom ∧ ( 𝐵 × 𝐵 ) ∈ V ) → ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ∈ V ) | |
| 30 | 26 28 29 | syl2anc | ⊢ ( 𝜑 → ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ∈ V ) |
| 31 | 4 30 | eqeltrd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 32 | inss1 | ⊢ ( 𝑈 ∩ Rng ) ⊆ 𝑈 | |
| 33 | 3 32 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑈 ) |
| 34 | 19 2 21 23 31 33 | estrres | ⊢ ( 𝜑 → ( ( ( ExtStrCat ‘ 𝑈 ) ↾s 𝐵 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 35 | 6 13 34 | 3eqtrd | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |