This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020) (Revised by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | estrres.c | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) | |
| estrres.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| estrres.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | ||
| estrres.x | ⊢ ( 𝜑 → · ∈ 𝑌 ) | ||
| estrres.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | ||
| estrres.u | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | ||
| Assertion | estrres | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝐴 ) sSet 〈 ( Hom ‘ ndx ) , 𝐺 〉 ) = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( Hom ‘ ndx ) , 𝐺 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | estrres.c | ⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) | |
| 2 | estrres.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 3 | estrres.h | ⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) | |
| 4 | estrres.x | ⊢ ( 𝜑 → · ∈ 𝑌 ) | |
| 5 | estrres.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 6 | estrres.u | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 7 | ovex | ⊢ ( 𝐶 ↾s 𝐴 ) ∈ V | |
| 8 | setsval | ⊢ ( ( ( 𝐶 ↾s 𝐴 ) ∈ V ∧ 𝐺 ∈ 𝑊 ) → ( ( 𝐶 ↾s 𝐴 ) sSet 〈 ( Hom ‘ ndx ) , 𝐺 〉 ) = ( ( ( 𝐶 ↾s 𝐴 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) ∪ { 〈 ( Hom ‘ ndx ) , 𝐺 〉 } ) ) | |
| 9 | 7 5 8 | sylancr | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝐴 ) sSet 〈 ( Hom ‘ ndx ) , 𝐺 〉 ) = ( ( ( 𝐶 ↾s 𝐴 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) ∪ { 〈 ( Hom ‘ ndx ) , 𝐺 〉 } ) ) |
| 10 | eqid | ⊢ ( 𝐶 ↾s 𝐴 ) = ( 𝐶 ↾s 𝐴 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 12 | eqid | ⊢ ( Base ‘ ndx ) = ( Base ‘ ndx ) | |
| 13 | tpex | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V | |
| 14 | 1 13 | eqeltrdi | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 15 | fvex | ⊢ ( Base ‘ ndx ) ∈ V | |
| 16 | fvex | ⊢ ( Hom ‘ ndx ) ∈ V | |
| 17 | fvex | ⊢ ( comp ‘ ndx ) ∈ V | |
| 18 | 15 16 17 | 3pm3.2i | ⊢ ( ( Base ‘ ndx ) ∈ V ∧ ( Hom ‘ ndx ) ∈ V ∧ ( comp ‘ ndx ) ∈ V ) |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ( ( Base ‘ ndx ) ∈ V ∧ ( Hom ‘ ndx ) ∈ V ∧ ( comp ‘ ndx ) ∈ V ) ) |
| 20 | slotsbhcdif | ⊢ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) | |
| 21 | 20 | a1i | ⊢ ( 𝜑 → ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) ) |
| 22 | funtpg | ⊢ ( ( ( ( Base ‘ ndx ) ∈ V ∧ ( Hom ‘ ndx ) ∈ V ∧ ( comp ‘ ndx ) ∈ V ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐻 ∈ 𝑋 ∧ · ∈ 𝑌 ) ∧ ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) ) → Fun { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) | |
| 23 | 19 2 3 4 21 22 | syl131anc | ⊢ ( 𝜑 → Fun { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 24 | 1 | funeqd | ⊢ ( 𝜑 → ( Fun 𝐶 ↔ Fun { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) ) |
| 25 | 23 24 | mpbird | ⊢ ( 𝜑 → Fun 𝐶 ) |
| 26 | 1 2 3 4 | estrreslem2 | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐶 ) |
| 27 | 1 2 | estrreslem1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 28 | 6 27 | sseqtrd | ⊢ ( 𝜑 → 𝐴 ⊆ ( Base ‘ 𝐶 ) ) |
| 29 | 10 11 12 14 25 26 28 | ressval3d | ⊢ ( 𝜑 → ( 𝐶 ↾s 𝐴 ) = ( 𝐶 sSet 〈 ( Base ‘ ndx ) , 𝐴 〉 ) ) |
| 30 | 29 | reseq1d | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝐴 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) = ( ( 𝐶 sSet 〈 ( Base ‘ ndx ) , 𝐴 〉 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) ) |
| 31 | 30 | uneq1d | ⊢ ( 𝜑 → ( ( ( 𝐶 ↾s 𝐴 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) ∪ { 〈 ( Hom ‘ ndx ) , 𝐺 〉 } ) = ( ( ( 𝐶 sSet 〈 ( Base ‘ ndx ) , 𝐴 〉 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) ∪ { 〈 ( Hom ‘ ndx ) , 𝐺 〉 } ) ) |
| 32 | 2 6 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 33 | setsval | ⊢ ( ( 𝐶 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐶 sSet 〈 ( Base ‘ ndx ) , 𝐴 〉 ) = ( ( 𝐶 ↾ ( V ∖ { ( Base ‘ ndx ) } ) ) ∪ { 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) ) | |
| 34 | 14 32 33 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 sSet 〈 ( Base ‘ ndx ) , 𝐴 〉 ) = ( ( 𝐶 ↾ ( V ∖ { ( Base ‘ ndx ) } ) ) ∪ { 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) ) |
| 35 | 34 | reseq1d | ⊢ ( 𝜑 → ( ( 𝐶 sSet 〈 ( Base ‘ ndx ) , 𝐴 〉 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) = ( ( ( 𝐶 ↾ ( V ∖ { ( Base ‘ ndx ) } ) ) ∪ { 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) ) |
| 36 | fvexd | ⊢ ( 𝜑 → ( Hom ‘ ndx ) ∈ V ) | |
| 37 | fvexd | ⊢ ( 𝜑 → ( comp ‘ ndx ) ∈ V ) | |
| 38 | 3 | elexd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 39 | 4 | elexd | ⊢ ( 𝜑 → · ∈ V ) |
| 40 | simp1 | ⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ) | |
| 41 | 40 | necomd | ⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) ) |
| 42 | 20 41 | mp1i | ⊢ ( 𝜑 → ( Hom ‘ ndx ) ≠ ( Base ‘ ndx ) ) |
| 43 | simp2 | ⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ) | |
| 44 | 43 | necomd | ⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( comp ‘ ndx ) ≠ ( Base ‘ ndx ) ) |
| 45 | 20 44 | mp1i | ⊢ ( 𝜑 → ( comp ‘ ndx ) ≠ ( Base ‘ ndx ) ) |
| 46 | 1 36 37 38 39 42 45 | tpres | ⊢ ( 𝜑 → ( 𝐶 ↾ ( V ∖ { ( Base ‘ ndx ) } ) ) = { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 47 | 46 | uneq1d | ⊢ ( 𝜑 → ( ( 𝐶 ↾ ( V ∖ { ( Base ‘ ndx ) } ) ) ∪ { 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) = ( { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∪ { 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) ) |
| 48 | df-tp | ⊢ { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 , 〈 ( Base ‘ ndx ) , 𝐴 〉 } = ( { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∪ { 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) | |
| 49 | 47 48 | eqtr4di | ⊢ ( 𝜑 → ( ( 𝐶 ↾ ( V ∖ { ( Base ‘ ndx ) } ) ) ∪ { 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) = { 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 , 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) |
| 50 | fvexd | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ V ) | |
| 51 | simp3 | ⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) | |
| 52 | 51 | necomd | ⊢ ( ( ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ∧ ( Base ‘ ndx ) ≠ ( comp ‘ ndx ) ∧ ( Hom ‘ ndx ) ≠ ( comp ‘ ndx ) ) → ( comp ‘ ndx ) ≠ ( Hom ‘ ndx ) ) |
| 53 | 20 52 | mp1i | ⊢ ( 𝜑 → ( comp ‘ ndx ) ≠ ( Hom ‘ ndx ) ) |
| 54 | 20 40 | mp1i | ⊢ ( 𝜑 → ( Base ‘ ndx ) ≠ ( Hom ‘ ndx ) ) |
| 55 | 49 37 50 39 32 53 54 | tpres | ⊢ ( 𝜑 → ( ( ( 𝐶 ↾ ( V ∖ { ( Base ‘ ndx ) } ) ) ∪ { 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) = { 〈 ( comp ‘ ndx ) , · 〉 , 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) |
| 56 | 35 55 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐶 sSet 〈 ( Base ‘ ndx ) , 𝐴 〉 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) = { 〈 ( comp ‘ ndx ) , · 〉 , 〈 ( Base ‘ ndx ) , 𝐴 〉 } ) |
| 57 | 56 | uneq1d | ⊢ ( 𝜑 → ( ( ( 𝐶 sSet 〈 ( Base ‘ ndx ) , 𝐴 〉 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) ∪ { 〈 ( Hom ‘ ndx ) , 𝐺 〉 } ) = ( { 〈 ( comp ‘ ndx ) , · 〉 , 〈 ( Base ‘ ndx ) , 𝐴 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐺 〉 } ) ) |
| 58 | df-tp | ⊢ { 〈 ( comp ‘ ndx ) , · 〉 , 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( Hom ‘ ndx ) , 𝐺 〉 } = ( { 〈 ( comp ‘ ndx ) , · 〉 , 〈 ( Base ‘ ndx ) , 𝐴 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐺 〉 } ) | |
| 59 | tprot | ⊢ { 〈 ( comp ‘ ndx ) , · 〉 , 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( Hom ‘ ndx ) , 𝐺 〉 } = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( Hom ‘ ndx ) , 𝐺 〉 , 〈 ( comp ‘ ndx ) , · 〉 } | |
| 60 | 58 59 | eqtr3i | ⊢ ( { 〈 ( comp ‘ ndx ) , · 〉 , 〈 ( Base ‘ ndx ) , 𝐴 〉 } ∪ { 〈 ( Hom ‘ ndx ) , 𝐺 〉 } ) = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( Hom ‘ ndx ) , 𝐺 〉 , 〈 ( comp ‘ ndx ) , · 〉 } |
| 61 | 57 60 | eqtrdi | ⊢ ( 𝜑 → ( ( ( 𝐶 sSet 〈 ( Base ‘ ndx ) , 𝐴 〉 ) ↾ ( V ∖ { ( Hom ‘ ndx ) } ) ) ∪ { 〈 ( Hom ‘ ndx ) , 𝐺 〉 } ) = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( Hom ‘ ndx ) , 𝐺 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 62 | 9 31 61 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝐴 ) sSet 〈 ( Hom ‘ ndx ) , 𝐺 〉 ) = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( Hom ‘ ndx ) , 𝐺 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |