This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnbra | ⊢ ran bra = ( LinFn ∩ ContFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfncnbd | ⊢ ( 𝑡 ∈ LinFn → ( 𝑡 ∈ ContFn ↔ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) | |
| 2 | 1 | pm5.32i | ⊢ ( ( 𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn ) ↔ ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
| 3 | elin | ⊢ ( 𝑡 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn ) ) | |
| 4 | ax-hilex | ⊢ ℋ ∈ V | |
| 5 | 4 | mptex | ⊢ ( 𝑦 ∈ ℋ ↦ ( 𝑦 ·ih 𝑥 ) ) ∈ V |
| 6 | df-bra | ⊢ bra = ( 𝑥 ∈ ℋ ↦ ( 𝑦 ∈ ℋ ↦ ( 𝑦 ·ih 𝑥 ) ) ) | |
| 7 | 5 6 | fnmpti | ⊢ bra Fn ℋ |
| 8 | fvelrnb | ⊢ ( bra Fn ℋ → ( 𝑡 ∈ ran bra ↔ ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 𝑡 ∈ ran bra ↔ ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ) |
| 10 | bralnfn | ⊢ ( 𝑥 ∈ ℋ → ( bra ‘ 𝑥 ) ∈ LinFn ) | |
| 11 | brabn | ⊢ ( 𝑥 ∈ ℋ → ( normfn ‘ ( bra ‘ 𝑥 ) ) ∈ ℝ ) | |
| 12 | 10 11 | jca | ⊢ ( 𝑥 ∈ ℋ → ( ( bra ‘ 𝑥 ) ∈ LinFn ∧ ( normfn ‘ ( bra ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 13 | eleq1 | ⊢ ( ( bra ‘ 𝑥 ) = 𝑡 → ( ( bra ‘ 𝑥 ) ∈ LinFn ↔ 𝑡 ∈ LinFn ) ) | |
| 14 | fveq2 | ⊢ ( ( bra ‘ 𝑥 ) = 𝑡 → ( normfn ‘ ( bra ‘ 𝑥 ) ) = ( normfn ‘ 𝑡 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( ( bra ‘ 𝑥 ) = 𝑡 → ( ( normfn ‘ ( bra ‘ 𝑥 ) ) ∈ ℝ ↔ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
| 16 | 13 15 | anbi12d | ⊢ ( ( bra ‘ 𝑥 ) = 𝑡 → ( ( ( bra ‘ 𝑥 ) ∈ LinFn ∧ ( normfn ‘ ( bra ‘ 𝑥 ) ) ∈ ℝ ) ↔ ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) ) |
| 17 | 12 16 | syl5ibcom | ⊢ ( 𝑥 ∈ ℋ → ( ( bra ‘ 𝑥 ) = 𝑡 → ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) ) |
| 18 | 17 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 → ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
| 19 | riesz1 | ⊢ ( 𝑡 ∈ LinFn → ( ( normfn ‘ 𝑡 ) ∈ ℝ ↔ ∃ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ) ) | |
| 20 | 19 | biimpa | ⊢ ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) → ∃ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ) |
| 21 | braval | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ) | |
| 22 | eqtr3 | ⊢ ( ( ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ∧ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) ) → ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) | |
| 23 | 22 | ex | ⊢ ( ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ( ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
| 24 | 21 23 | syl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
| 25 | 24 | ralimdva | ⊢ ( 𝑥 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
| 27 | brafn | ⊢ ( 𝑥 ∈ ℋ → ( bra ‘ 𝑥 ) : ℋ ⟶ ℂ ) | |
| 28 | lnfnf | ⊢ ( 𝑡 ∈ LinFn → 𝑡 : ℋ ⟶ ℂ ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) → 𝑡 : ℋ ⟶ ℂ ) |
| 30 | ffn | ⊢ ( ( bra ‘ 𝑥 ) : ℋ ⟶ ℂ → ( bra ‘ 𝑥 ) Fn ℋ ) | |
| 31 | ffn | ⊢ ( 𝑡 : ℋ ⟶ ℂ → 𝑡 Fn ℋ ) | |
| 32 | eqfnfv | ⊢ ( ( ( bra ‘ 𝑥 ) Fn ℋ ∧ 𝑡 Fn ℋ ) → ( ( bra ‘ 𝑥 ) = 𝑡 ↔ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) | |
| 33 | 30 31 32 | syl2an | ⊢ ( ( ( bra ‘ 𝑥 ) : ℋ ⟶ ℂ ∧ 𝑡 : ℋ ⟶ ℂ ) → ( ( bra ‘ 𝑥 ) = 𝑡 ↔ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
| 34 | 27 29 33 | syl2anr | ⊢ ( ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ∧ 𝑥 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) = 𝑡 ↔ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) ) |
| 35 | 26 34 | sylibrd | ⊢ ( ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ( bra ‘ 𝑥 ) = 𝑡 ) ) |
| 36 | 35 | reximdva | ⊢ ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) → ( ∃ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑡 ‘ 𝑦 ) = ( 𝑦 ·ih 𝑥 ) → ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ) ) |
| 37 | 20 36 | mpd | ⊢ ( ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) → ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ) |
| 38 | 18 37 | impbii | ⊢ ( ∃ 𝑥 ∈ ℋ ( bra ‘ 𝑥 ) = 𝑡 ↔ ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
| 39 | 9 38 | bitri | ⊢ ( 𝑡 ∈ ran bra ↔ ( 𝑡 ∈ LinFn ∧ ( normfn ‘ 𝑡 ) ∈ ℝ ) ) |
| 40 | 2 3 39 | 3bitr4ri | ⊢ ( 𝑡 ∈ ran bra ↔ 𝑡 ∈ ( LinFn ∩ ContFn ) ) |
| 41 | 40 | eqriv | ⊢ ran bra = ( LinFn ∩ ContFn ) |