This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnbra | |- ran bra = ( LinFn i^i ContFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfncnbd | |- ( t e. LinFn -> ( t e. ContFn <-> ( normfn ` t ) e. RR ) ) |
|
| 2 | 1 | pm5.32i | |- ( ( t e. LinFn /\ t e. ContFn ) <-> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) |
| 3 | elin | |- ( t e. ( LinFn i^i ContFn ) <-> ( t e. LinFn /\ t e. ContFn ) ) |
|
| 4 | ax-hilex | |- ~H e. _V |
|
| 5 | 4 | mptex | |- ( y e. ~H |-> ( y .ih x ) ) e. _V |
| 6 | df-bra | |- bra = ( x e. ~H |-> ( y e. ~H |-> ( y .ih x ) ) ) |
|
| 7 | 5 6 | fnmpti | |- bra Fn ~H |
| 8 | fvelrnb | |- ( bra Fn ~H -> ( t e. ran bra <-> E. x e. ~H ( bra ` x ) = t ) ) |
|
| 9 | 7 8 | ax-mp | |- ( t e. ran bra <-> E. x e. ~H ( bra ` x ) = t ) |
| 10 | bralnfn | |- ( x e. ~H -> ( bra ` x ) e. LinFn ) |
|
| 11 | brabn | |- ( x e. ~H -> ( normfn ` ( bra ` x ) ) e. RR ) |
|
| 12 | 10 11 | jca | |- ( x e. ~H -> ( ( bra ` x ) e. LinFn /\ ( normfn ` ( bra ` x ) ) e. RR ) ) |
| 13 | eleq1 | |- ( ( bra ` x ) = t -> ( ( bra ` x ) e. LinFn <-> t e. LinFn ) ) |
|
| 14 | fveq2 | |- ( ( bra ` x ) = t -> ( normfn ` ( bra ` x ) ) = ( normfn ` t ) ) |
|
| 15 | 14 | eleq1d | |- ( ( bra ` x ) = t -> ( ( normfn ` ( bra ` x ) ) e. RR <-> ( normfn ` t ) e. RR ) ) |
| 16 | 13 15 | anbi12d | |- ( ( bra ` x ) = t -> ( ( ( bra ` x ) e. LinFn /\ ( normfn ` ( bra ` x ) ) e. RR ) <-> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) ) |
| 17 | 12 16 | syl5ibcom | |- ( x e. ~H -> ( ( bra ` x ) = t -> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) ) |
| 18 | 17 | rexlimiv | |- ( E. x e. ~H ( bra ` x ) = t -> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) |
| 19 | riesz1 | |- ( t e. LinFn -> ( ( normfn ` t ) e. RR <-> E. x e. ~H A. y e. ~H ( t ` y ) = ( y .ih x ) ) ) |
|
| 20 | 19 | biimpa | |- ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) -> E. x e. ~H A. y e. ~H ( t ` y ) = ( y .ih x ) ) |
| 21 | braval | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( bra ` x ) ` y ) = ( y .ih x ) ) |
|
| 22 | eqtr3 | |- ( ( ( ( bra ` x ) ` y ) = ( y .ih x ) /\ ( t ` y ) = ( y .ih x ) ) -> ( ( bra ` x ) ` y ) = ( t ` y ) ) |
|
| 23 | 22 | ex | |- ( ( ( bra ` x ) ` y ) = ( y .ih x ) -> ( ( t ` y ) = ( y .ih x ) -> ( ( bra ` x ) ` y ) = ( t ` y ) ) ) |
| 24 | 21 23 | syl | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( t ` y ) = ( y .ih x ) -> ( ( bra ` x ) ` y ) = ( t ` y ) ) ) |
| 25 | 24 | ralimdva | |- ( x e. ~H -> ( A. y e. ~H ( t ` y ) = ( y .ih x ) -> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) |
| 26 | 25 | adantl | |- ( ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) /\ x e. ~H ) -> ( A. y e. ~H ( t ` y ) = ( y .ih x ) -> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) |
| 27 | brafn | |- ( x e. ~H -> ( bra ` x ) : ~H --> CC ) |
|
| 28 | lnfnf | |- ( t e. LinFn -> t : ~H --> CC ) |
|
| 29 | 28 | adantr | |- ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) -> t : ~H --> CC ) |
| 30 | ffn | |- ( ( bra ` x ) : ~H --> CC -> ( bra ` x ) Fn ~H ) |
|
| 31 | ffn | |- ( t : ~H --> CC -> t Fn ~H ) |
|
| 32 | eqfnfv | |- ( ( ( bra ` x ) Fn ~H /\ t Fn ~H ) -> ( ( bra ` x ) = t <-> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) |
|
| 33 | 30 31 32 | syl2an | |- ( ( ( bra ` x ) : ~H --> CC /\ t : ~H --> CC ) -> ( ( bra ` x ) = t <-> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) |
| 34 | 27 29 33 | syl2anr | |- ( ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) /\ x e. ~H ) -> ( ( bra ` x ) = t <-> A. y e. ~H ( ( bra ` x ) ` y ) = ( t ` y ) ) ) |
| 35 | 26 34 | sylibrd | |- ( ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) /\ x e. ~H ) -> ( A. y e. ~H ( t ` y ) = ( y .ih x ) -> ( bra ` x ) = t ) ) |
| 36 | 35 | reximdva | |- ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) -> ( E. x e. ~H A. y e. ~H ( t ` y ) = ( y .ih x ) -> E. x e. ~H ( bra ` x ) = t ) ) |
| 37 | 20 36 | mpd | |- ( ( t e. LinFn /\ ( normfn ` t ) e. RR ) -> E. x e. ~H ( bra ` x ) = t ) |
| 38 | 18 37 | impbii | |- ( E. x e. ~H ( bra ` x ) = t <-> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) |
| 39 | 9 38 | bitri | |- ( t e. ran bra <-> ( t e. LinFn /\ ( normfn ` t ) e. RR ) ) |
| 40 | 2 3 39 | 3bitr4ri | |- ( t e. ran bra <-> t e. ( LinFn i^i ContFn ) ) |
| 41 | 40 | eqriv | |- ran bra = ( LinFn i^i ContFn ) |