This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnfncnbd | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ( normfn ‘ 𝑇 ) ∈ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcfnex | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) | |
| 2 | 1 | ex | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn → ( normfn ‘ 𝑇 ) ∈ ℝ ) ) |
| 3 | simpr | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) → ( normfn ‘ 𝑇 ) ∈ ℝ ) | |
| 4 | nmbdfnlb | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) | |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
| 6 | 5 | ralrimiva | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) → ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
| 7 | oveq1 | ⊢ ( 𝑥 = ( normfn ‘ 𝑇 ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) = ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) | |
| 8 | 7 | breq2d | ⊢ ( 𝑥 = ( normfn ‘ 𝑇 ) → ( ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑥 = ( normfn ‘ 𝑇 ) → ( ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) ) |
| 10 | 9 | rspcev | ⊢ ( ( ( normfn ‘ 𝑇 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 11 | 3 6 10 | syl2anc | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 12 | 11 | ex | ⊢ ( 𝑇 ∈ LinFn → ( ( normfn ‘ 𝑇 ) ∈ ℝ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 13 | lnfncon | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) | |
| 14 | 12 13 | sylibrd | ⊢ ( 𝑇 ∈ LinFn → ( ( normfn ‘ 𝑇 ) ∈ ℝ → 𝑇 ∈ ContFn ) ) |
| 15 | 2 14 | impbid | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ( normfn ‘ 𝑇 ) ∈ ℝ ) ) |