This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Part 1 of the Riesz representation theorem for bounded linear functionals. A linear functional is bounded iff its value can be expressed as an inner product. Part of Theorem 17.3 of Halmos p. 31. For part 2, see riesz2 . For the continuous linear functional version, see riesz3i and riesz4 . (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riesz1 | ⊢ ( 𝑇 ∈ LinFn → ( ( normfn ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfncnbd | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ( normfn ‘ 𝑇 ) ∈ ℝ ) ) | |
| 2 | elin | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) ) | |
| 3 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 𝑥 ) = ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑥 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ↔ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| 5 | 4 | rexralbidv | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ↔ ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| 6 | inss1 | ⊢ ( LinFn ∩ ContFn ) ⊆ LinFn | |
| 7 | 0lnfn | ⊢ ( ℋ × { 0 } ) ∈ LinFn | |
| 8 | 0cnfn | ⊢ ( ℋ × { 0 } ) ∈ ContFn | |
| 9 | elin | ⊢ ( ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) ↔ ( ( ℋ × { 0 } ) ∈ LinFn ∧ ( ℋ × { 0 } ) ∈ ContFn ) ) | |
| 10 | 7 8 9 | mpbir2an | ⊢ ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) |
| 11 | 10 | elimel | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn ) |
| 12 | 6 11 | sselii | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn |
| 13 | inss2 | ⊢ ( LinFn ∩ ContFn ) ⊆ ContFn | |
| 14 | 13 11 | sselii | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn |
| 15 | 12 14 | riesz3i | ⊢ ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) |
| 16 | 5 15 | dedth | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 17 | 2 16 | sylbir | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ) → ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) |
| 18 | 17 | ex | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn → ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| 19 | normcl | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
| 21 | fveq2 | ⊢ ( ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) = ( abs ‘ ( 𝑥 ·ih 𝑦 ) ) ) | |
| 22 | 21 | adantl | ⊢ ( ( ( ( 𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) = ( abs ‘ ( 𝑥 ·ih 𝑦 ) ) ) |
| 23 | bcs | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑥 ·ih 𝑦 ) ) ≤ ( ( normℎ ‘ 𝑥 ) · ( normℎ ‘ 𝑦 ) ) ) | |
| 24 | normcl | ⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) | |
| 25 | recn | ⊢ ( ( normℎ ‘ 𝑥 ) ∈ ℝ → ( normℎ ‘ 𝑥 ) ∈ ℂ ) | |
| 26 | recn | ⊢ ( ( normℎ ‘ 𝑦 ) ∈ ℝ → ( normℎ ‘ 𝑦 ) ∈ ℂ ) | |
| 27 | mulcom | ⊢ ( ( ( normℎ ‘ 𝑥 ) ∈ ℂ ∧ ( normℎ ‘ 𝑦 ) ∈ ℂ ) → ( ( normℎ ‘ 𝑥 ) · ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) | |
| 28 | 25 26 27 | syl2an | ⊢ ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( normℎ ‘ 𝑥 ) · ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 29 | 24 19 28 | syl2an | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) · ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 30 | 23 29 | breqtrd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑥 ·ih 𝑦 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 31 | 30 | adantll | ⊢ ( ( ( 𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝑥 ·ih 𝑦 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( 𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) → ( abs ‘ ( 𝑥 ·ih 𝑦 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 33 | 22 32 | eqbrtrd | ⊢ ( ( ( ( 𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 34 | 33 | ex | ⊢ ( ( ( 𝑇 ∈ LinFn ∧ 𝑥 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) ) |
| 35 | 34 | an32s | ⊢ ( ( ( 𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) ) |
| 36 | 35 | ralimdva | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) → ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) ) |
| 37 | oveq1 | ⊢ ( 𝑧 = ( normℎ ‘ 𝑦 ) → ( 𝑧 · ( normℎ ‘ 𝑥 ) ) = ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) | |
| 38 | 37 | breq2d | ⊢ ( 𝑧 = ( normℎ ‘ 𝑦 ) → ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝑧 · ( normℎ ‘ 𝑥 ) ) ↔ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) ) |
| 39 | 38 | ralbidv | ⊢ ( 𝑧 = ( normℎ ‘ 𝑦 ) → ( ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝑧 · ( normℎ ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) ) |
| 40 | 39 | rspcev | ⊢ ( ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ 𝑦 ) · ( normℎ ‘ 𝑥 ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝑧 · ( normℎ ‘ 𝑥 ) ) ) |
| 41 | 20 36 40 | syl6an | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝑦 ∈ ℋ ) → ( ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝑧 · ( normℎ ‘ 𝑥 ) ) ) ) |
| 42 | 41 | rexlimdva | ⊢ ( 𝑇 ∈ LinFn → ( ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝑧 · ( normℎ ‘ 𝑥 ) ) ) ) |
| 43 | lnfncon | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝑧 · ( normℎ ‘ 𝑥 ) ) ) ) | |
| 44 | 42 43 | sylibrd | ⊢ ( 𝑇 ∈ LinFn → ( ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) → 𝑇 ∈ ContFn ) ) |
| 45 | 18 44 | impbid | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) |
| 46 | 1 45 | bitr3d | ⊢ ( 𝑇 ∈ LinFn → ( ( normfn ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℋ ∀ 𝑥 ∈ ℋ ( 𝑇 ‘ 𝑥 ) = ( 𝑥 ·ih 𝑦 ) ) ) |