This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Dirac bra function is a linear functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bralnfn | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ LinFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brafn | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ) | |
| 2 | simpll | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → 𝐴 ∈ ℋ ) | |
| 3 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 4 | 3 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 5 | simprr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → 𝑧 ∈ ℋ ) | |
| 6 | braadd | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) | |
| 7 | 2 4 5 6 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
| 8 | bramul | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) | |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
| 10 | 9 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) ) |
| 11 | 10 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ ( 𝑥 ·ℎ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
| 12 | 7 11 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
| 13 | 12 | ralrimivva | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
| 14 | 13 | ralrimiva | ⊢ ( 𝐴 ∈ ℋ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) |
| 15 | ellnfn | ⊢ ( ( bra ‘ 𝐴 ) ∈ LinFn ↔ ( ( bra ‘ 𝐴 ) : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( bra ‘ 𝐴 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( bra ‘ 𝐴 ) ‘ 𝑦 ) ) + ( ( bra ‘ 𝐴 ) ‘ 𝑧 ) ) ) ) | |
| 16 | 1 14 15 | sylanbrc | ⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ LinFn ) |