This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The bra function maps vectors one-to-one onto the set of continuous linear functionals. (Contributed by NM, 26-May-2006) (Proof shortened by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bra11 | ⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | ⊢ ℋ ∈ V | |
| 2 | 1 | mptex | ⊢ ( 𝑦 ∈ ℋ ↦ ( 𝑦 ·ih 𝑥 ) ) ∈ V |
| 3 | df-bra | ⊢ bra = ( 𝑥 ∈ ℋ ↦ ( 𝑦 ∈ ℋ ↦ ( 𝑦 ·ih 𝑥 ) ) ) | |
| 4 | 2 3 | fnmpti | ⊢ bra Fn ℋ |
| 5 | rnbra | ⊢ ran bra = ( LinFn ∩ ContFn ) | |
| 6 | fveq1 | ⊢ ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → ( ( bra ‘ 𝑥 ) ‘ 𝑧 ) = ( ( bra ‘ 𝑦 ) ‘ 𝑧 ) ) | |
| 7 | braval | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) ‘ 𝑧 ) = ( 𝑧 ·ih 𝑥 ) ) | |
| 8 | 7 | adantlr | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) ‘ 𝑧 ) = ( 𝑧 ·ih 𝑥 ) ) |
| 9 | braval | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝑧 ·ih 𝑦 ) ) | |
| 10 | 9 | adantll | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝑧 ·ih 𝑦 ) ) |
| 11 | 8 10 | eqeq12d | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( bra ‘ 𝑥 ) ‘ 𝑧 ) = ( ( bra ‘ 𝑦 ) ‘ 𝑧 ) ↔ ( 𝑧 ·ih 𝑥 ) = ( 𝑧 ·ih 𝑦 ) ) ) |
| 12 | 6 11 | imbitrid | ⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → ( 𝑧 ·ih 𝑥 ) = ( 𝑧 ·ih 𝑦 ) ) ) |
| 13 | 12 | ralrimdva | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → ∀ 𝑧 ∈ ℋ ( 𝑧 ·ih 𝑥 ) = ( 𝑧 ·ih 𝑦 ) ) ) |
| 14 | hial2eq2 | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ∀ 𝑧 ∈ ℋ ( 𝑧 ·ih 𝑥 ) = ( 𝑧 ·ih 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 15 | 13 14 | sylibd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 16 | 15 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 17 | dff1o6 | ⊢ ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ↔ ( bra Fn ℋ ∧ ran bra = ( LinFn ∩ ContFn ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 18 | 4 5 16 17 | mpbir3an | ⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) |