This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimeq.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| rlimeq.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| rlimeq.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| rlimeq.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 = 𝐶 ) | ||
| Assertion | rlimeq | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimeq.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 2 | rlimeq.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 3 | rlimeq.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 4 | rlimeq.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 = 𝐶 ) | |
| 5 | rlimss | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 6 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 7 | 6 1 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 8 | 7 | sseq1d | ⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 9 | 5 8 | imbitrid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 → 𝐴 ⊆ ℝ ) ) |
| 10 | rlimss | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ ℝ ) | |
| 11 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 12 | 11 2 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = 𝐴 ) |
| 13 | 12 | sseq1d | ⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 14 | 10 13 | imbitrid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 → 𝐴 ⊆ ℝ ) ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) | |
| 16 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐷 [,) +∞ ) ) ) | |
| 17 | 15 16 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐷 [,) +∞ ) ) ) |
| 18 | 17 | simpld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝑥 ∈ 𝐴 ) |
| 19 | 17 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝑥 ∈ ( 𝐷 [,) +∞ ) ) |
| 20 | elicopnf | ⊢ ( 𝐷 ∈ ℝ → ( 𝑥 ∈ ( 𝐷 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥 ) ) ) | |
| 21 | 3 20 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐷 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥 ) ) ) |
| 22 | 21 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐷 [,) +∞ ) ) → ( 𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥 ) ) |
| 23 | 19 22 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐷 ≤ 𝑥 ) ) |
| 24 | 23 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝐷 ≤ 𝑥 ) |
| 25 | 18 24 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) |
| 26 | 25 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) → 𝐵 = 𝐶 ) |
| 27 | 26 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐶 ) ) |
| 28 | inss1 | ⊢ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ⊆ 𝐴 | |
| 29 | resmpt | ⊢ ( ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐵 ) ) | |
| 30 | 28 29 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐵 ) |
| 31 | resmpt | ⊢ ( ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐶 ) ) | |
| 32 | 28 31 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ↦ 𝐶 ) |
| 33 | 27 30 32 | 3eqtr4g | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) ) |
| 34 | resres | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) | |
| 35 | resres | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ ( 𝐷 [,) +∞ ) ) ) | |
| 36 | 33 34 35 | 3eqtr4g | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) ) |
| 37 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 38 | resmpt | ⊢ ( 𝐴 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 39 | reseq1 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) ) | |
| 40 | 37 38 39 | mp2b | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) |
| 41 | resmpt | ⊢ ( 𝐴 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 42 | reseq1 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ) | |
| 43 | 37 41 42 | mp2b | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) |
| 44 | 36 40 43 | 3eqtr3g | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ) |
| 45 | 44 | breq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ) ) |
| 47 | 1 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 49 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 50 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝐷 ∈ ℝ ) |
| 51 | 48 49 50 | rlimresb | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ) ) |
| 52 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 54 | 53 49 50 | rlimresb | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐷 [,) +∞ ) ) ⇝𝑟 𝐸 ) ) |
| 55 | 46 51 54 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) ) |
| 56 | 55 | ex | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) ) ) |
| 57 | 9 14 56 | pm5.21ndd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐸 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐸 ) ) |