This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimeq.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| rlimeq.2 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
||
| rlimeq.3 | |- ( ph -> D e. RR ) |
||
| rlimeq.4 | |- ( ( ph /\ ( x e. A /\ D <_ x ) ) -> B = C ) |
||
| Assertion | rlimeq | |- ( ph -> ( ( x e. A |-> B ) ~~>r E <-> ( x e. A |-> C ) ~~>r E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimeq.1 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 2 | rlimeq.2 | |- ( ( ph /\ x e. A ) -> C e. CC ) |
|
| 3 | rlimeq.3 | |- ( ph -> D e. RR ) |
|
| 4 | rlimeq.4 | |- ( ( ph /\ ( x e. A /\ D <_ x ) ) -> B = C ) |
|
| 5 | rlimss | |- ( ( x e. A |-> B ) ~~>r E -> dom ( x e. A |-> B ) C_ RR ) |
|
| 6 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 7 | 6 1 | dmmptd | |- ( ph -> dom ( x e. A |-> B ) = A ) |
| 8 | 7 | sseq1d | |- ( ph -> ( dom ( x e. A |-> B ) C_ RR <-> A C_ RR ) ) |
| 9 | 5 8 | imbitrid | |- ( ph -> ( ( x e. A |-> B ) ~~>r E -> A C_ RR ) ) |
| 10 | rlimss | |- ( ( x e. A |-> C ) ~~>r E -> dom ( x e. A |-> C ) C_ RR ) |
|
| 11 | eqid | |- ( x e. A |-> C ) = ( x e. A |-> C ) |
|
| 12 | 11 2 | dmmptd | |- ( ph -> dom ( x e. A |-> C ) = A ) |
| 13 | 12 | sseq1d | |- ( ph -> ( dom ( x e. A |-> C ) C_ RR <-> A C_ RR ) ) |
| 14 | 10 13 | imbitrid | |- ( ph -> ( ( x e. A |-> C ) ~~>r E -> A C_ RR ) ) |
| 15 | simpr | |- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> x e. ( A i^i ( D [,) +oo ) ) ) |
|
| 16 | elin | |- ( x e. ( A i^i ( D [,) +oo ) ) <-> ( x e. A /\ x e. ( D [,) +oo ) ) ) |
|
| 17 | 15 16 | sylib | |- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> ( x e. A /\ x e. ( D [,) +oo ) ) ) |
| 18 | 17 | simpld | |- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> x e. A ) |
| 19 | 17 | simprd | |- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> x e. ( D [,) +oo ) ) |
| 20 | elicopnf | |- ( D e. RR -> ( x e. ( D [,) +oo ) <-> ( x e. RR /\ D <_ x ) ) ) |
|
| 21 | 3 20 | syl | |- ( ph -> ( x e. ( D [,) +oo ) <-> ( x e. RR /\ D <_ x ) ) ) |
| 22 | 21 | biimpa | |- ( ( ph /\ x e. ( D [,) +oo ) ) -> ( x e. RR /\ D <_ x ) ) |
| 23 | 19 22 | syldan | |- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> ( x e. RR /\ D <_ x ) ) |
| 24 | 23 | simprd | |- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> D <_ x ) |
| 25 | 18 24 | jca | |- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> ( x e. A /\ D <_ x ) ) |
| 26 | 25 4 | syldan | |- ( ( ph /\ x e. ( A i^i ( D [,) +oo ) ) ) -> B = C ) |
| 27 | 26 | mpteq2dva | |- ( ph -> ( x e. ( A i^i ( D [,) +oo ) ) |-> B ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> C ) ) |
| 28 | inss1 | |- ( A i^i ( D [,) +oo ) ) C_ A |
|
| 29 | resmpt | |- ( ( A i^i ( D [,) +oo ) ) C_ A -> ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> B ) ) |
|
| 30 | 28 29 | ax-mp | |- ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> B ) |
| 31 | resmpt | |- ( ( A i^i ( D [,) +oo ) ) C_ A -> ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> C ) ) |
|
| 32 | 28 31 | ax-mp | |- ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) = ( x e. ( A i^i ( D [,) +oo ) ) |-> C ) |
| 33 | 27 30 32 | 3eqtr4g | |- ( ph -> ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) = ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) ) |
| 34 | resres | |- ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> B ) |` ( A i^i ( D [,) +oo ) ) ) |
|
| 35 | resres | |- ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( A i^i ( D [,) +oo ) ) ) |
|
| 36 | 33 34 35 | 3eqtr4g | |- ( ph -> ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) ) |
| 37 | ssid | |- A C_ A |
|
| 38 | resmpt | |- ( A C_ A -> ( ( x e. A |-> B ) |` A ) = ( x e. A |-> B ) ) |
|
| 39 | reseq1 | |- ( ( ( x e. A |-> B ) |` A ) = ( x e. A |-> B ) -> ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> B ) |` ( D [,) +oo ) ) ) |
|
| 40 | 37 38 39 | mp2b | |- ( ( ( x e. A |-> B ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> B ) |` ( D [,) +oo ) ) |
| 41 | resmpt | |- ( A C_ A -> ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) ) |
|
| 42 | reseq1 | |- ( ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) -> ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ) |
|
| 43 | 37 41 42 | mp2b | |- ( ( ( x e. A |-> C ) |` A ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( D [,) +oo ) ) |
| 44 | 36 40 43 | 3eqtr3g | |- ( ph -> ( ( x e. A |-> B ) |` ( D [,) +oo ) ) = ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ) |
| 45 | 44 | breq1d | |- ( ph -> ( ( ( x e. A |-> B ) |` ( D [,) +oo ) ) ~~>r E <-> ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ~~>r E ) ) |
| 46 | 45 | adantr | |- ( ( ph /\ A C_ RR ) -> ( ( ( x e. A |-> B ) |` ( D [,) +oo ) ) ~~>r E <-> ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ~~>r E ) ) |
| 47 | 1 | fmpttd | |- ( ph -> ( x e. A |-> B ) : A --> CC ) |
| 48 | 47 | adantr | |- ( ( ph /\ A C_ RR ) -> ( x e. A |-> B ) : A --> CC ) |
| 49 | simpr | |- ( ( ph /\ A C_ RR ) -> A C_ RR ) |
|
| 50 | 3 | adantr | |- ( ( ph /\ A C_ RR ) -> D e. RR ) |
| 51 | 48 49 50 | rlimresb | |- ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> B ) ~~>r E <-> ( ( x e. A |-> B ) |` ( D [,) +oo ) ) ~~>r E ) ) |
| 52 | 2 | fmpttd | |- ( ph -> ( x e. A |-> C ) : A --> CC ) |
| 53 | 52 | adantr | |- ( ( ph /\ A C_ RR ) -> ( x e. A |-> C ) : A --> CC ) |
| 54 | 53 49 50 | rlimresb | |- ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> C ) ~~>r E <-> ( ( x e. A |-> C ) |` ( D [,) +oo ) ) ~~>r E ) ) |
| 55 | 46 51 54 | 3bitr4d | |- ( ( ph /\ A C_ RR ) -> ( ( x e. A |-> B ) ~~>r E <-> ( x e. A |-> C ) ~~>r E ) ) |
| 56 | 55 | ex | |- ( ph -> ( A C_ RR -> ( ( x e. A |-> B ) ~~>r E <-> ( x e. A |-> C ) ~~>r E ) ) ) |
| 57 | 9 14 56 | pm5.21ndd | |- ( ph -> ( ( x e. A |-> B ) ~~>r E <-> ( x e. A |-> C ) ~~>r E ) ) |