This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two functions that are eventually equal to one another are eventually bounded if one of them is. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimeq.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| rlimeq.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| rlimeq.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| rlimeq.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 = 𝐶 ) | ||
| Assertion | o1eq | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimeq.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 2 | rlimeq.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 3 | rlimeq.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 4 | rlimeq.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 = 𝐶 ) | |
| 5 | 1 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 6 | 2 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 7 | 4 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐷 ≤ 𝑥 ) ) → ( abs ‘ 𝐵 ) = ( abs ‘ 𝐶 ) ) |
| 8 | 5 6 3 7 | lo1eq | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) ) ) |
| 9 | 1 | lo1o12 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ ≤𝑂(1) ) ) |
| 10 | 2 | lo1o12 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐶 ) ) ∈ ≤𝑂(1) ) ) |
| 11 | 8 9 10 | 3bitr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) ) |