This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Forward direction of rlimclim . (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimclim1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| rlimclim1.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| rlimclim1.3 | ⊢ ( 𝜑 → 𝐹 ⇝𝑟 𝐴 ) | ||
| rlimclim1.4 | ⊢ ( 𝜑 → 𝑍 ⊆ dom 𝐹 ) | ||
| Assertion | rlimclim1 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimclim1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | rlimclim1.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | rlimclim1.3 | ⊢ ( 𝜑 → 𝐹 ⇝𝑟 𝐴 ) | |
| 4 | rlimclim1.4 | ⊢ ( 𝜑 → 𝑍 ⊆ dom 𝐹 ) | |
| 5 | fvex | ⊢ ( 𝐹 ‘ 𝑤 ) ∈ V | |
| 6 | 5 | rgenw | ⊢ ∀ 𝑤 ∈ dom 𝐹 ( 𝐹 ‘ 𝑤 ) ∈ V |
| 7 | 6 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑤 ∈ dom 𝐹 ( 𝐹 ‘ 𝑤 ) ∈ V ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 9 | rlimf | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 12 | 11 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 = ( 𝑤 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑤 ) ) ) |
| 13 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 ⇝𝑟 𝐴 ) |
| 14 | 12 13 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑤 ∈ dom 𝐹 ↦ ( 𝐹 ‘ 𝑤 ) ) ⇝𝑟 𝐴 ) |
| 15 | 7 8 14 | rlimi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
| 16 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → 𝑀 ∈ ℤ ) |
| 17 | flcl | ⊢ ( 𝑧 ∈ ℝ → ( ⌊ ‘ 𝑧 ) ∈ ℤ ) | |
| 18 | 17 | peano2zd | ⊢ ( 𝑧 ∈ ℝ → ( ( ⌊ ‘ 𝑧 ) + 1 ) ∈ ℤ ) |
| 19 | 18 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → ( ( ⌊ ‘ 𝑧 ) + 1 ) ∈ ℤ ) |
| 20 | 19 16 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 21 | 16 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → 𝑀 ∈ ℝ ) |
| 22 | 19 | zred | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → ( ( ⌊ ‘ 𝑧 ) + 1 ) ∈ ℝ ) |
| 23 | max1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑧 ) + 1 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) | |
| 24 | 21 22 23 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) |
| 25 | eluz2 | ⊢ ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ∈ ℤ ∧ 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) | |
| 26 | 16 20 24 25 | syl3anbrc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 27 | 26 1 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ∈ 𝑍 ) |
| 28 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑧 ∈ ℝ ) | |
| 29 | 18 | zred | ⊢ ( 𝑧 ∈ ℝ → ( ( ⌊ ‘ 𝑧 ) + 1 ) ∈ ℝ ) |
| 30 | 28 29 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → ( ( ⌊ ‘ 𝑧 ) + 1 ) ∈ ℝ ) |
| 31 | 21 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑀 ∈ ℝ ) |
| 32 | 30 31 | ifcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ∈ ℝ ) |
| 33 | eluzelre | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) → 𝑘 ∈ ℝ ) | |
| 34 | 33 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑘 ∈ ℝ ) |
| 35 | fllep1 | ⊢ ( 𝑧 ∈ ℝ → 𝑧 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) ) | |
| 36 | 28 35 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑧 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) ) |
| 37 | max2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑧 ) + 1 ) ∈ ℝ ) → ( ( ⌊ ‘ 𝑧 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) | |
| 38 | 31 30 37 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → ( ( ⌊ ‘ 𝑧 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) |
| 39 | 28 30 32 36 38 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑧 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) |
| 40 | eluzle | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ≤ 𝑘 ) | |
| 41 | 40 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ≤ 𝑘 ) |
| 42 | 28 32 34 39 41 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑧 ≤ 𝑘 ) |
| 43 | breq2 | ⊢ ( 𝑤 = 𝑘 → ( 𝑧 ≤ 𝑤 ↔ 𝑧 ≤ 𝑘 ) ) | |
| 44 | 43 | imbrov2fvoveq | ⊢ ( 𝑤 = 𝑘 → ( ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ↔ ( 𝑧 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ) |
| 45 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) | |
| 46 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑍 ⊆ dom 𝐹 ) |
| 47 | 1 | uztrn2 | ⊢ ( ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 48 | 27 47 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 49 | 46 48 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → 𝑘 ∈ dom 𝐹 ) |
| 50 | 44 45 49 | rspcdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → ( 𝑧 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 51 | 42 50 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 52 | 51 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 53 | fveq2 | ⊢ ( 𝑗 = if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ) | |
| 54 | 53 | raleqdv | ⊢ ( 𝑗 = if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 55 | 54 | rspcev | ⊢ ( ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑧 ) + 1 ) , ( ( ⌊ ‘ 𝑧 ) + 1 ) , 𝑀 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 56 | 27 52 55 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ℝ ∧ ∀ 𝑤 ∈ dom 𝐹 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 57 | 15 56 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 58 | 57 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 59 | rlimpm | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | |
| 60 | 3 59 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 61 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 62 | rlimcl | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐴 ∈ ℂ ) | |
| 63 | 3 62 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 64 | 4 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ dom 𝐹 ) |
| 65 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 66 | 64 65 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 67 | 1 2 60 61 63 66 | clim2c | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 68 | 58 67 | mpbird | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) |