This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a function with a limit in the complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlimpm | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rlim | ⊢ ⇝𝑟 = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } | |
| 2 | opabssxp | ⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } ⊆ ( ( ℂ ↑pm ℝ ) × ℂ ) | |
| 3 | 1 2 | eqsstri | ⊢ ⇝𝑟 ⊆ ( ( ℂ ↑pm ℝ ) × ℂ ) |
| 4 | dmss | ⊢ ( ⇝𝑟 ⊆ ( ( ℂ ↑pm ℝ ) × ℂ ) → dom ⇝𝑟 ⊆ dom ( ( ℂ ↑pm ℝ ) × ℂ ) ) | |
| 5 | 3 4 | ax-mp | ⊢ dom ⇝𝑟 ⊆ dom ( ( ℂ ↑pm ℝ ) × ℂ ) |
| 6 | dmxpss | ⊢ dom ( ( ℂ ↑pm ℝ ) × ℂ ) ⊆ ( ℂ ↑pm ℝ ) | |
| 7 | 5 6 | sstri | ⊢ dom ⇝𝑟 ⊆ ( ℂ ↑pm ℝ ) |
| 8 | rlimrel | ⊢ Rel ⇝𝑟 | |
| 9 | 8 | releldmi | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ dom ⇝𝑟 ) |
| 10 | 7 9 | sselid | ⊢ ( 𝐹 ⇝𝑟 𝐴 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |