This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimclim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| rlimclim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| rlimclim.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) | ||
| Assertion | rlimclim | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimclim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | rlimclim.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | rlimclim.3 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℂ ) | |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝐴 ) → 𝑀 ∈ ℤ ) |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝐴 ) → 𝐹 ⇝𝑟 𝐴 ) | |
| 6 | fdm | ⊢ ( 𝐹 : 𝑍 ⟶ ℂ → dom 𝐹 = 𝑍 ) | |
| 7 | eqimss2 | ⊢ ( dom 𝐹 = 𝑍 → 𝑍 ⊆ dom 𝐹 ) | |
| 8 | 3 6 7 | 3syl | ⊢ ( 𝜑 → 𝑍 ⊆ dom 𝐹 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝐴 ) → 𝑍 ⊆ dom 𝐹 ) |
| 10 | 1 4 5 9 | rlimclim1 | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝𝑟 𝐴 ) → 𝐹 ⇝ 𝐴 ) |
| 11 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 13 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 14 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 15 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 16 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → 𝐹 ⇝ 𝐴 ) | |
| 17 | 1 13 14 15 16 | climi2 | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 18 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 19 | 1 18 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 20 | zssre | ⊢ ℤ ⊆ ℝ | |
| 21 | 19 20 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 22 | fveq2 | ⊢ ( 𝑘 = 𝑤 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 23 | 22 | fvoveq1d | ⊢ ( 𝑘 = 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) ) |
| 24 | 23 | breq1d | ⊢ ( 𝑘 = 𝑤 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
| 25 | simplrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) | |
| 26 | simplrl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑧 ∈ 𝑍 ) | |
| 27 | 19 26 | sselid | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑧 ∈ ℤ ) |
| 28 | simprl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑤 ∈ 𝑍 ) | |
| 29 | 19 28 | sselid | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑤 ∈ ℤ ) |
| 30 | simprr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑧 ≤ 𝑤 ) | |
| 31 | eluz2 | ⊢ ( 𝑤 ∈ ( ℤ≥ ‘ 𝑧 ) ↔ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝑧 ≤ 𝑤 ) ) | |
| 32 | 27 29 30 31 | syl3anbrc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → 𝑤 ∈ ( ℤ≥ ‘ 𝑧 ) ) |
| 33 | 24 25 32 | rspcdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ ( 𝑤 ∈ 𝑍 ∧ 𝑧 ≤ 𝑤 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) |
| 34 | 33 | expr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) ∧ 𝑤 ∈ 𝑍 ) → ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
| 35 | 34 | ralrimiva | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑧 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) → ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
| 36 | 35 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) |
| 37 | 36 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∃ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) |
| 38 | ssrexv | ⊢ ( 𝑍 ⊆ ℝ → ( ∃ 𝑧 ∈ 𝑍 ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) | |
| 39 | 21 37 38 | mpsylsyld | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑧 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑧 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) |
| 40 | 17 39 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
| 41 | 40 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) |
| 42 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 : 𝑍 ⟶ ℂ ) |
| 43 | 21 | a1i | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝑍 ⊆ ℝ ) |
| 44 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) ∧ 𝑤 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 45 | 42 43 44 | rlim | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → ( 𝐹 ⇝𝑟 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑍 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑤 ) − 𝐴 ) ) < 𝑦 ) ) ) ) |
| 46 | 12 41 45 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝐹 ⇝ 𝐴 ) → 𝐹 ⇝𝑟 𝐴 ) |
| 47 | 10 46 | impbida | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |