This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Produce a real limit from an integer limit, where the real function is only dependent on the integer part of x . (Contributed by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climrlim2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climrlim2.2 | ⊢ ( 𝑛 = ( ⌊ ‘ 𝑥 ) → 𝐵 = 𝐶 ) | ||
| climrlim2.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| climrlim2.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climrlim2.5 | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 ) | ||
| climrlim2.6 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | ||
| climrlim2.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ 𝑥 ) | ||
| Assertion | climrlim2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrlim2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climrlim2.2 | ⊢ ( 𝑛 = ( ⌊ ‘ 𝑥 ) → 𝐵 = 𝐶 ) | |
| 3 | climrlim2.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 4 | climrlim2.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | climrlim2.5 | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 ) | |
| 6 | climrlim2.6 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | |
| 7 | climrlim2.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ 𝑥 ) | |
| 8 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 9 | 8 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ ) |
| 10 | 9 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → 𝑗 ∈ ℤ ) |
| 11 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 12 | 11 | flcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
| 13 | 12 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
| 14 | 13 | ad2ant2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
| 15 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → 𝑗 ≤ 𝑥 ) | |
| 16 | 11 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 17 | 16 | ad2ant2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 18 | flge | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ≤ 𝑥 ↔ 𝑗 ≤ ( ⌊ ‘ 𝑥 ) ) ) | |
| 19 | 17 10 18 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( 𝑗 ≤ 𝑥 ↔ 𝑗 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 20 | 15 19 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → 𝑗 ≤ ( ⌊ ‘ 𝑥 ) ) |
| 21 | eluz2 | ⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝑗 ∈ ℤ ∧ ( ⌊ ‘ 𝑥 ) ∈ ℤ ∧ 𝑗 ≤ ( ⌊ ‘ 𝑥 ) ) ) | |
| 22 | 10 14 20 21 | syl3anbrc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 23 | simpr | ⊢ ( ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) | |
| 24 | 23 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) |
| 25 | fveq2 | ⊢ ( 𝑘 = ( ⌊ ‘ 𝑥 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) | |
| 26 | 25 | fvoveq1d | ⊢ ( 𝑘 = ( ⌊ ‘ 𝑥 ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) = ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) ) |
| 27 | 26 | breq1d | ⊢ ( 𝑘 = ( ⌊ ‘ 𝑥 ) → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ↔ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) < 𝑦 ) ) |
| 28 | 27 | rspcv | ⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) < 𝑦 ) ) |
| 29 | 22 24 28 | syl2im | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) < 𝑦 ) ) |
| 30 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) | |
| 31 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℤ ) |
| 32 | flge | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑥 ↔ 𝑀 ≤ ( ⌊ ‘ 𝑥 ) ) ) | |
| 33 | 11 31 32 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑀 ≤ 𝑥 ↔ 𝑀 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 34 | 7 33 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ ( ⌊ ‘ 𝑥 ) ) |
| 35 | eluz2 | ⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( ⌊ ‘ 𝑥 ) ∈ ℤ ∧ 𝑀 ≤ ( ⌊ ‘ 𝑥 ) ) ) | |
| 36 | 31 12 34 35 | syl3anbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 37 | 36 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ⌊ ‘ 𝑥 ) ∈ 𝑍 ) |
| 38 | 2 | eleq1d | ⊢ ( 𝑛 = ( ⌊ ‘ 𝑥 ) → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
| 39 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 𝐵 ∈ ℂ ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑛 ∈ 𝑍 𝐵 ∈ ℂ ) |
| 41 | 38 40 37 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 42 | 30 2 37 41 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) = 𝐶 ) |
| 43 | 42 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) = 𝐶 ) |
| 44 | 43 | ad2ant2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) = 𝐶 ) |
| 45 | 44 | fvoveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) = ( abs ‘ ( 𝐶 − 𝐷 ) ) ) |
| 46 | 45 | breq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝐷 ) ) < 𝑦 ↔ ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) |
| 47 | 29 46 | sylibd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑗 ≤ 𝑥 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) |
| 48 | 47 | expr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑗 ≤ 𝑥 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 49 | 48 | com23 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 50 | 49 | ralrimdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 51 | eluzelre | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℝ ) | |
| 52 | 51 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ℝ ) |
| 53 | 52 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℝ ) |
| 54 | 50 53 | jctild | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ( 𝑗 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) ) |
| 55 | 54 | expimpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) ) → ( 𝑗 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) ) |
| 56 | 55 | reximdv2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ∃ 𝑗 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 57 | 56 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 58 | 57 | adantld | ⊢ ( 𝜑 → ( ( 𝐷 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 59 | climrel | ⊢ Rel ⇝ | |
| 60 | 59 | brrelex1i | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ V ) |
| 61 | 5 60 | syl | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ∈ V ) |
| 62 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ) | |
| 63 | 1 4 61 62 | clim2 | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 ↔ ( 𝐷 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) − 𝐷 ) ) < 𝑦 ) ) ) ) |
| 64 | 41 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ ℂ ) |
| 65 | climcl | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 → 𝐷 ∈ ℂ ) | |
| 66 | 5 65 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 67 | 64 3 66 | rlim2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑗 ≤ 𝑥 → ( abs ‘ ( 𝐶 − 𝐷 ) ) < 𝑦 ) ) ) |
| 68 | 58 63 67 | 3imtr4d | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑍 ↦ 𝐵 ) ⇝ 𝐷 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) ) |
| 69 | 5 68 | mpd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |