This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate: The limit of complex number function F is C , or F converges to C , in the real sense. This means that for any real x , no matter how small, there always exists a number y such that the absolute difference of any number in the function beyond y and the limit is less than x . (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlim.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| rlim.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | ||
| rlim.4 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = 𝐵 ) | ||
| Assertion | rlim | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlim.1 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 2 | rlim.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 3 | rlim.4 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = 𝐵 ) | |
| 4 | rlimrel | ⊢ Rel ⇝𝑟 | |
| 5 | 4 | brrelex2i | ⊢ ( 𝐹 ⇝𝑟 𝐶 → 𝐶 ∈ V ) |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐶 → 𝐶 ∈ V ) ) |
| 7 | elex | ⊢ ( 𝐶 ∈ ℂ → 𝐶 ∈ V ) | |
| 8 | 7 | ad2antrl | ⊢ ( ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) → 𝐶 ∈ V ) |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) → 𝐶 ∈ V ) ) |
| 10 | cnex | ⊢ ℂ ∈ V | |
| 11 | reex | ⊢ ℝ ∈ V | |
| 12 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) | |
| 13 | 10 11 12 | mpanl12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 14 | 1 2 13 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 15 | eleq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ↔ 𝐹 ∈ ( ℂ ↑pm ℝ ) ) ) | |
| 16 | eleq1 | ⊢ ( 𝑤 = 𝐶 → ( 𝑤 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) | |
| 17 | 15 16 | bi2anan9 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑤 ∈ ℂ ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝐶 ∈ ℂ ) ) ) |
| 18 | simpl | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → 𝑓 = 𝐹 ) | |
| 19 | 18 | dmeqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → dom 𝑓 = dom 𝐹 ) |
| 20 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 21 | oveq12 | ⊢ ( ( ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 = 𝐶 ) → ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) = ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) | |
| 22 | 20 21 | sylan | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) = ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) ) |
| 24 | 23 | breq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) |
| 25 | 24 | imbi2d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) |
| 26 | 19 25 | raleqbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → ( ∀ 𝑧 ∈ dom 𝑓 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) |
| 27 | 26 | rexbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝑓 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) ) < 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) |
| 28 | 27 | ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝑓 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) |
| 29 | 17 28 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐶 ) → ( ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑤 ∈ ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝑓 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) ) < 𝑥 ) ) ↔ ( ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝐶 ∈ ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) ) |
| 30 | df-rlim | ⊢ ⇝𝑟 = { 〈 𝑓 , 𝑤 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑤 ∈ ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝑓 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝑓 ‘ 𝑧 ) − 𝑤 ) ) < 𝑥 ) ) } | |
| 31 | 29 30 | brabga | ⊢ ( ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝐶 ∈ V ) → ( 𝐹 ⇝𝑟 𝐶 ↔ ( ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝐶 ∈ ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) ) |
| 32 | anass | ⊢ ( ( ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝐶 ∈ ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) ) | |
| 33 | 31 32 | bitrdi | ⊢ ( ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ 𝐶 ∈ V ) → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) ) ) |
| 34 | 33 | ex | ⊢ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) → ( 𝐶 ∈ V → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) ) ) ) |
| 35 | 14 34 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ V → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) ) ) ) |
| 36 | 6 9 35 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) ) ) |
| 37 | 14 | biantrurd | ⊢ ( 𝜑 → ( ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) ) ) |
| 38 | 1 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 39 | 38 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ) |
| 40 | 3 | fvoveq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 41 | 40 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) |
| 42 | 41 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 43 | 42 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 44 | 39 43 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 45 | 44 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 46 | 45 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
| 47 | 46 | anbi2d | ⊢ ( 𝜑 → ( ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝐶 ) ) < 𝑥 ) ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) ) |
| 48 | 36 37 47 | 3bitr2d | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) ) |