This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimclim.1 | |- Z = ( ZZ>= ` M ) |
|
| rlimclim.2 | |- ( ph -> M e. ZZ ) |
||
| rlimclim.3 | |- ( ph -> F : Z --> CC ) |
||
| Assertion | rlimclim | |- ( ph -> ( F ~~>r A <-> F ~~> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimclim.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | rlimclim.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | rlimclim.3 | |- ( ph -> F : Z --> CC ) |
|
| 4 | 2 | adantr | |- ( ( ph /\ F ~~>r A ) -> M e. ZZ ) |
| 5 | simpr | |- ( ( ph /\ F ~~>r A ) -> F ~~>r A ) |
|
| 6 | fdm | |- ( F : Z --> CC -> dom F = Z ) |
|
| 7 | eqimss2 | |- ( dom F = Z -> Z C_ dom F ) |
|
| 8 | 3 6 7 | 3syl | |- ( ph -> Z C_ dom F ) |
| 9 | 8 | adantr | |- ( ( ph /\ F ~~>r A ) -> Z C_ dom F ) |
| 10 | 1 4 5 9 | rlimclim1 | |- ( ( ph /\ F ~~>r A ) -> F ~~> A ) |
| 11 | climcl | |- ( F ~~> A -> A e. CC ) |
|
| 12 | 11 | adantl | |- ( ( ph /\ F ~~> A ) -> A e. CC ) |
| 13 | 2 | ad2antrr | |- ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) -> M e. ZZ ) |
| 14 | simpr | |- ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) -> y e. RR+ ) |
|
| 15 | eqidd | |- ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
|
| 16 | simplr | |- ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) -> F ~~> A ) |
|
| 17 | 1 13 14 15 16 | climi2 | |- ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) -> E. z e. Z A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) |
| 18 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 19 | 1 18 | eqsstri | |- Z C_ ZZ |
| 20 | zssre | |- ZZ C_ RR |
|
| 21 | 19 20 | sstri | |- Z C_ RR |
| 22 | fveq2 | |- ( k = w -> ( F ` k ) = ( F ` w ) ) |
|
| 23 | 22 | fvoveq1d | |- ( k = w -> ( abs ` ( ( F ` k ) - A ) ) = ( abs ` ( ( F ` w ) - A ) ) ) |
| 24 | 23 | breq1d | |- ( k = w -> ( ( abs ` ( ( F ` k ) - A ) ) < y <-> ( abs ` ( ( F ` w ) - A ) ) < y ) ) |
| 25 | simplrr | |- ( ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) /\ ( w e. Z /\ z <_ w ) ) -> A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) |
|
| 26 | simplrl | |- ( ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) /\ ( w e. Z /\ z <_ w ) ) -> z e. Z ) |
|
| 27 | 19 26 | sselid | |- ( ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) /\ ( w e. Z /\ z <_ w ) ) -> z e. ZZ ) |
| 28 | simprl | |- ( ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) /\ ( w e. Z /\ z <_ w ) ) -> w e. Z ) |
|
| 29 | 19 28 | sselid | |- ( ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) /\ ( w e. Z /\ z <_ w ) ) -> w e. ZZ ) |
| 30 | simprr | |- ( ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) /\ ( w e. Z /\ z <_ w ) ) -> z <_ w ) |
|
| 31 | eluz2 | |- ( w e. ( ZZ>= ` z ) <-> ( z e. ZZ /\ w e. ZZ /\ z <_ w ) ) |
|
| 32 | 27 29 30 31 | syl3anbrc | |- ( ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) /\ ( w e. Z /\ z <_ w ) ) -> w e. ( ZZ>= ` z ) ) |
| 33 | 24 25 32 | rspcdva | |- ( ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) /\ ( w e. Z /\ z <_ w ) ) -> ( abs ` ( ( F ` w ) - A ) ) < y ) |
| 34 | 33 | expr | |- ( ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) /\ w e. Z ) -> ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) ) |
| 35 | 34 | ralrimiva | |- ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ ( z e. Z /\ A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y ) ) -> A. w e. Z ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) ) |
| 36 | 35 | expr | |- ( ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) /\ z e. Z ) -> ( A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y -> A. w e. Z ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) ) ) |
| 37 | 36 | reximdva | |- ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) -> ( E. z e. Z A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y -> E. z e. Z A. w e. Z ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) ) ) |
| 38 | ssrexv | |- ( Z C_ RR -> ( E. z e. Z A. w e. Z ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) -> E. z e. RR A. w e. Z ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) ) ) |
|
| 39 | 21 37 38 | mpsylsyld | |- ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) -> ( E. z e. Z A. k e. ( ZZ>= ` z ) ( abs ` ( ( F ` k ) - A ) ) < y -> E. z e. RR A. w e. Z ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) ) ) |
| 40 | 17 39 | mpd | |- ( ( ( ph /\ F ~~> A ) /\ y e. RR+ ) -> E. z e. RR A. w e. Z ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) ) |
| 41 | 40 | ralrimiva | |- ( ( ph /\ F ~~> A ) -> A. y e. RR+ E. z e. RR A. w e. Z ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) ) |
| 42 | 3 | adantr | |- ( ( ph /\ F ~~> A ) -> F : Z --> CC ) |
| 43 | 21 | a1i | |- ( ( ph /\ F ~~> A ) -> Z C_ RR ) |
| 44 | eqidd | |- ( ( ( ph /\ F ~~> A ) /\ w e. Z ) -> ( F ` w ) = ( F ` w ) ) |
|
| 45 | 42 43 44 | rlim | |- ( ( ph /\ F ~~> A ) -> ( F ~~>r A <-> ( A e. CC /\ A. y e. RR+ E. z e. RR A. w e. Z ( z <_ w -> ( abs ` ( ( F ` w ) - A ) ) < y ) ) ) ) |
| 46 | 12 41 45 | mpbir2and | |- ( ( ph /\ F ~~> A ) -> F ~~>r A ) |
| 47 | 10 46 | impbida | |- ( ph -> ( F ~~>r A <-> F ~~> A ) ) |