This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If D is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in D , then the limit of the sequence also lies in D . (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimcld2.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| rlimcld2.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
| rlimcld2.3 | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) | ||
| rlimcld2.4 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ) → 𝑅 ∈ ℝ+ ) | ||
| rlimcld2.5 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ) ∧ 𝑧 ∈ 𝐷 ) → 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) | ||
| rlimcld2.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐷 ) | ||
| Assertion | rlimcld2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcld2.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 2 | rlimcld2.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
| 3 | rlimcld2.3 | ⊢ ( 𝜑 → 𝐷 ⊆ ℂ ) | |
| 4 | rlimcld2.4 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ) → 𝑅 ∈ ℝ+ ) | |
| 5 | rlimcld2.5 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ) ∧ 𝑧 ∈ 𝐷 ) → 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) | |
| 6 | rlimcld2.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐷 ) | |
| 7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 ) |
| 9 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) |
| 10 | rlimcl | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ¬ 𝐶 ∈ 𝐷 ) | |
| 13 | 11 12 | eldifd | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → 𝐶 ∈ ( ℂ ∖ 𝐷 ) ) |
| 14 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) 𝑅 ∈ ℝ+ ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) 𝑅 ∈ ℝ+ ) |
| 16 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 | |
| 17 | 16 | nfel1 | ⊢ Ⅎ 𝑦 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ |
| 18 | csbeq1a | ⊢ ( 𝑦 = 𝐶 → 𝑅 = ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) | |
| 19 | 18 | eleq1d | ⊢ ( 𝑦 = 𝐶 → ( 𝑅 ∈ ℝ+ ↔ ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ ) ) |
| 20 | 17 19 | rspc | ⊢ ( 𝐶 ∈ ( ℂ ∖ 𝐷 ) → ( ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) 𝑅 ∈ ℝ+ → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ ) ) |
| 21 | 13 15 20 | sylc | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ ) |
| 22 | 8 21 9 | rlimi | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ) |
| 23 | 21 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ+ ) |
| 24 | 23 | rpred | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ∈ ℝ ) |
| 25 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ⊆ ℂ ) |
| 26 | 6 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐷 ) |
| 27 | 25 26 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 28 | 11 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 29 | 27 28 | subcld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 30 | 29 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ℝ ) |
| 31 | 5 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ) → ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 32 | 31 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 34 | nfcv | ⊢ Ⅎ 𝑦 𝐷 | |
| 35 | nfcv | ⊢ Ⅎ 𝑦 ≤ | |
| 36 | nfcv | ⊢ Ⅎ 𝑦 ( abs ‘ ( 𝑧 − 𝐶 ) ) | |
| 37 | 16 35 36 | nfbr | ⊢ Ⅎ 𝑦 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) |
| 38 | 34 37 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) |
| 39 | oveq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝑧 − 𝑦 ) = ( 𝑧 − 𝐶 ) ) | |
| 40 | 39 | fveq2d | ⊢ ( 𝑦 = 𝐶 → ( abs ‘ ( 𝑧 − 𝑦 ) ) = ( abs ‘ ( 𝑧 − 𝐶 ) ) ) |
| 41 | 18 40 | breq12d | ⊢ ( 𝑦 = 𝐶 → ( 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ↔ ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) ) |
| 42 | 41 | ralbidv | ⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) ) |
| 43 | 38 42 | rspc | ⊢ ( 𝐶 ∈ ( ℂ ∖ 𝐷 ) → ( ∀ 𝑦 ∈ ( ℂ ∖ 𝐷 ) ∀ 𝑧 ∈ 𝐷 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) → ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) ) |
| 44 | 13 33 43 | sylc | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) |
| 45 | 44 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ) |
| 46 | fvoveq1 | ⊢ ( 𝑧 = 𝐵 → ( abs ‘ ( 𝑧 − 𝐶 ) ) = ( abs ‘ ( 𝐵 − 𝐶 ) ) ) | |
| 47 | 46 | breq2d | ⊢ ( 𝑧 = 𝐵 → ( ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) ↔ ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 48 | 47 | rspcv | ⊢ ( 𝐵 ∈ 𝐷 → ( ∀ 𝑧 ∈ 𝐷 ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝑧 − 𝐶 ) ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) ) |
| 49 | 26 45 48 | sylc | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ≤ ( abs ‘ ( 𝐵 − 𝐶 ) ) ) |
| 50 | 24 30 49 | lensymd | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ¬ ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) |
| 51 | id | ⊢ ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) → ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ) | |
| 52 | 51 | imp | ⊢ ( ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) |
| 53 | 50 52 | nsyl | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ¬ ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) |
| 54 | 53 | nrexdv | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) → ¬ ∃ 𝑥 ∈ 𝐴 ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) |
| 55 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 56 | 55 6 | dmmptd | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 57 | rlimss | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 58 | 2 57 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 59 | 56 58 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 60 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 61 | 59 60 | sstrdi | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
| 62 | supxrunb1 | ⊢ ( 𝐴 ⊆ ℝ* → ( ∀ 𝑟 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) | |
| 63 | 61 62 | syl | ⊢ ( 𝜑 → ( ∀ 𝑟 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ↔ sup ( 𝐴 , ℝ* , < ) = +∞ ) ) |
| 64 | 1 63 | mpbird | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ) |
| 65 | 64 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ∀ 𝑟 ∈ ℝ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ) |
| 66 | 65 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) → ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ) |
| 67 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) | |
| 68 | 67 | expcom | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑟 ≤ 𝑥 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) ) |
| 69 | 66 68 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) → ∃ 𝑥 ∈ 𝐴 ( ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ∧ 𝑟 ≤ 𝑥 ) ) ) |
| 70 | 54 69 | mtod | ⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) ∧ 𝑟 ∈ ℝ ) → ¬ ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ) |
| 71 | 70 | nrexdv | ⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ 𝐷 ) → ¬ ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑟 ≤ 𝑥 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < ⦋ 𝐶 / 𝑦 ⦌ 𝑅 ) ) |
| 72 | 22 71 | condan | ⊢ ( 𝜑 → 𝐶 ∈ 𝐷 ) |