This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a sequence of complex numbers with nonnegative real part has nonnegative real part. (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimcld2.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| rlimcld2.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | ||
| rlimrege0.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| rlimrege0.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( ℜ ‘ 𝐵 ) ) | ||
| Assertion | rlimrege0 | ⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimcld2.1 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 2 | rlimcld2.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) | |
| 3 | rlimrege0.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | rlimrege0.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( ℜ ‘ 𝐵 ) ) | |
| 5 | ssrab2 | ⊢ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ⊆ ℂ | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ⊆ ℂ ) |
| 7 | eldifi | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → 𝑦 ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) → 𝑦 ∈ ℂ ) |
| 9 | 8 | recld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) → ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
| 10 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( ℜ ‘ 𝑤 ) = ( ℜ ‘ 𝑦 ) ) | |
| 11 | 10 | breq2d | ⊢ ( 𝑤 = 𝑦 → ( 0 ≤ ( ℜ ‘ 𝑤 ) ↔ 0 ≤ ( ℜ ‘ 𝑦 ) ) ) |
| 12 | 11 | notbid | ⊢ ( 𝑤 = 𝑦 → ( ¬ 0 ≤ ( ℜ ‘ 𝑤 ) ↔ ¬ 0 ≤ ( ℜ ‘ 𝑦 ) ) ) |
| 13 | notrab | ⊢ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) = { 𝑤 ∈ ℂ ∣ ¬ 0 ≤ ( ℜ ‘ 𝑤 ) } | |
| 14 | 12 13 | elrab2 | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ↔ ( 𝑦 ∈ ℂ ∧ ¬ 0 ≤ ( ℜ ‘ 𝑦 ) ) ) |
| 15 | 14 | simprbi | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → ¬ 0 ≤ ( ℜ ‘ 𝑦 ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) → ¬ 0 ≤ ( ℜ ‘ 𝑦 ) ) |
| 17 | 0re | ⊢ 0 ∈ ℝ | |
| 18 | ltnle | ⊢ ( ( ( ℜ ‘ 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℜ ‘ 𝑦 ) < 0 ↔ ¬ 0 ≤ ( ℜ ‘ 𝑦 ) ) ) | |
| 19 | 9 17 18 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) → ( ( ℜ ‘ 𝑦 ) < 0 ↔ ¬ 0 ≤ ( ℜ ‘ 𝑦 ) ) ) |
| 20 | 16 19 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) → ( ℜ ‘ 𝑦 ) < 0 ) |
| 21 | 9 20 | negelrpd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) → - ( ℜ ‘ 𝑦 ) ∈ ℝ+ ) |
| 22 | 9 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) → - ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → - ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
| 24 | elrabi | ⊢ ( 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } → 𝑧 ∈ ℂ ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → 𝑧 ∈ ℂ ) |
| 26 | 8 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → 𝑦 ∈ ℂ ) |
| 27 | 25 26 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → ( 𝑧 − 𝑦 ) ∈ ℂ ) |
| 28 | 27 | recld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → ( ℜ ‘ ( 𝑧 − 𝑦 ) ) ∈ ℝ ) |
| 29 | 27 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → ( abs ‘ ( 𝑧 − 𝑦 ) ) ∈ ℝ ) |
| 30 | 0red | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → 0 ∈ ℝ ) | |
| 31 | 25 | recld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → ( ℜ ‘ 𝑧 ) ∈ ℝ ) |
| 32 | 26 | recld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → ( ℜ ‘ 𝑦 ) ∈ ℝ ) |
| 33 | fveq2 | ⊢ ( 𝑤 = 𝑧 → ( ℜ ‘ 𝑤 ) = ( ℜ ‘ 𝑧 ) ) | |
| 34 | 33 | breq2d | ⊢ ( 𝑤 = 𝑧 → ( 0 ≤ ( ℜ ‘ 𝑤 ) ↔ 0 ≤ ( ℜ ‘ 𝑧 ) ) ) |
| 35 | 34 | elrab | ⊢ ( 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ↔ ( 𝑧 ∈ ℂ ∧ 0 ≤ ( ℜ ‘ 𝑧 ) ) ) |
| 36 | 35 | simprbi | ⊢ ( 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } → 0 ≤ ( ℜ ‘ 𝑧 ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → 0 ≤ ( ℜ ‘ 𝑧 ) ) |
| 38 | 30 31 32 37 | lesub1dd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → ( 0 − ( ℜ ‘ 𝑦 ) ) ≤ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝑦 ) ) ) |
| 39 | df-neg | ⊢ - ( ℜ ‘ 𝑦 ) = ( 0 − ( ℜ ‘ 𝑦 ) ) | |
| 40 | 39 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → - ( ℜ ‘ 𝑦 ) = ( 0 − ( ℜ ‘ 𝑦 ) ) ) |
| 41 | 25 26 | resubd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → ( ℜ ‘ ( 𝑧 − 𝑦 ) ) = ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝑦 ) ) ) |
| 42 | 38 40 41 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → - ( ℜ ‘ 𝑦 ) ≤ ( ℜ ‘ ( 𝑧 − 𝑦 ) ) ) |
| 43 | 27 | releabsd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → ( ℜ ‘ ( 𝑧 − 𝑦 ) ) ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 44 | 23 28 29 42 43 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( ℂ ∖ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) ) ∧ 𝑧 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) → - ( ℜ ‘ 𝑦 ) ≤ ( abs ‘ ( 𝑧 − 𝑦 ) ) ) |
| 45 | fveq2 | ⊢ ( 𝑤 = 𝐵 → ( ℜ ‘ 𝑤 ) = ( ℜ ‘ 𝐵 ) ) | |
| 46 | 45 | breq2d | ⊢ ( 𝑤 = 𝐵 → ( 0 ≤ ( ℜ ‘ 𝑤 ) ↔ 0 ≤ ( ℜ ‘ 𝐵 ) ) ) |
| 47 | 46 3 4 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) |
| 48 | 1 2 6 21 44 47 | rlimcld2 | ⊢ ( 𝜑 → 𝐶 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ) |
| 49 | fveq2 | ⊢ ( 𝑤 = 𝐶 → ( ℜ ‘ 𝑤 ) = ( ℜ ‘ 𝐶 ) ) | |
| 50 | 49 | breq2d | ⊢ ( 𝑤 = 𝐶 → ( 0 ≤ ( ℜ ‘ 𝑤 ) ↔ 0 ≤ ( ℜ ‘ 𝐶 ) ) ) |
| 51 | 50 | elrab | ⊢ ( 𝐶 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } ↔ ( 𝐶 ∈ ℂ ∧ 0 ≤ ( ℜ ‘ 𝐶 ) ) ) |
| 52 | 51 | simprbi | ⊢ ( 𝐶 ∈ { 𝑤 ∈ ℂ ∣ 0 ≤ ( ℜ ‘ 𝑤 ) } → 0 ≤ ( ℜ ‘ 𝐶 ) ) |
| 53 | 48 52 | syl | ⊢ ( 𝜑 → 0 ≤ ( ℜ ‘ 𝐶 ) ) |