This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020) (Revised by AV, 10-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngccat.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| rngcid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| rngcid.o | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| rngcid.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rngcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| rngcid.s | ⊢ 𝑆 = ( Base ‘ 𝑋 ) | ||
| Assertion | rngcid | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngccat.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 2 | rngcid.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | rngcid.o | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 4 | rngcid.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 5 | rngcid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | rngcid.s | ⊢ 𝑆 = ( Base ‘ 𝑋 ) | |
| 7 | eqidd | ⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) = ( 𝑈 ∩ Rng ) ) | |
| 8 | eqidd | ⊢ ( 𝜑 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) = ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) | |
| 9 | 1 4 7 8 | rngcval | ⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( Id ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) ) |
| 11 | 3 10 | eqtrid | ⊢ ( 𝜑 → 1 = ( Id ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) ) |
| 12 | 11 | fveq1d | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ( Id ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) ‘ 𝑋 ) ) |
| 13 | eqid | ⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) | |
| 14 | eqid | ⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) | |
| 15 | incom | ⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) ) |
| 17 | 14 4 16 8 | rnghmsubcsetc | ⊢ ( 𝜑 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 18 | 7 8 | rnghmresfn | ⊢ ( 𝜑 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) Fn ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) |
| 19 | eqid | ⊢ ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) | |
| 20 | 1 2 4 | rngcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
| 21 | 20 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( 𝑈 ∩ Rng ) ) ) |
| 22 | 5 21 | mpbid | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Rng ) ) |
| 23 | 13 17 18 19 22 | subcid | ⊢ ( 𝜑 → ( ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) ‘ 𝑋 ) = ( ( Id ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) ‘ 𝑋 ) ) |
| 24 | elinel1 | ⊢ ( 𝑋 ∈ ( 𝑈 ∩ Rng ) → 𝑋 ∈ 𝑈 ) | |
| 25 | 21 24 | biimtrdi | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈 ) ) |
| 26 | 5 25 | mpd | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 27 | 14 19 4 26 | estrcid | ⊢ ( 𝜑 → ( ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 28 | 6 | eqcomi | ⊢ ( Base ‘ 𝑋 ) = 𝑆 |
| 29 | 28 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑋 ) = 𝑆 ) |
| 30 | 29 | reseq2d | ⊢ ( 𝜑 → ( I ↾ ( Base ‘ 𝑋 ) ) = ( I ↾ 𝑆 ) ) |
| 31 | 27 30 | eqtrd | ⊢ ( 𝜑 → ( ( Id ‘ ( ExtStrCat ‘ 𝑈 ) ) ‘ 𝑋 ) = ( I ↾ 𝑆 ) ) |
| 32 | 12 23 31 | 3eqtr2d | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ 𝑆 ) ) |