This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for rhmsubc . (Contributed by AV, 2-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | ||
| rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | ||
| Assertion | rhmsubclem2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 3 | rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | |
| 5 | opelxpi | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝑅 × 𝑅 ) ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝑅 × 𝑅 ) ) |
| 7 | 6 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ) → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( RingHom ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 8 | df-ov | ⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 9 | 4 | fveq1i | ⊢ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) = ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) |
| 10 | 8 9 | eqtri | ⊢ ( 𝑋 𝐻 𝑌 ) = ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) |
| 11 | df-ov | ⊢ ( 𝑋 RingHom 𝑌 ) = ( RingHom ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 12 | 7 10 11 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅 ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |