This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for rhmsubc . (Contributed by AV, 2-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| rngcrescrhm.c | |- C = ( RngCat ` U ) |
||
| rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
||
| rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
||
| Assertion | rhmsubclem3 | |- ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| 2 | rngcrescrhm.c | |- C = ( RngCat ` U ) |
|
| 3 | rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
|
| 4 | rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
|
| 5 | 3 | eleq2d | |- ( ph -> ( x e. R <-> x e. ( Ring i^i U ) ) ) |
| 6 | elinel1 | |- ( x e. ( Ring i^i U ) -> x e. Ring ) |
|
| 7 | 5 6 | biimtrdi | |- ( ph -> ( x e. R -> x e. Ring ) ) |
| 8 | 7 | imp | |- ( ( ph /\ x e. R ) -> x e. Ring ) |
| 9 | eqid | |- ( Base ` x ) = ( Base ` x ) |
|
| 10 | 9 | idrhm | |- ( x e. Ring -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) ) |
| 11 | 8 10 | syl | |- ( ( ph /\ x e. R ) -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) ) |
| 12 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 13 | 2 | eqcomi | |- ( RngCat ` U ) = C |
| 14 | 13 | fveq2i | |- ( Id ` ( RngCat ` U ) ) = ( Id ` C ) |
| 15 | 1 | adantr | |- ( ( ph /\ x e. R ) -> U e. V ) |
| 16 | incom | |- ( Ring i^i U ) = ( U i^i Ring ) |
|
| 17 | ringssrng | |- Ring C_ Rng |
|
| 18 | sslin | |- ( Ring C_ Rng -> ( U i^i Ring ) C_ ( U i^i Rng ) ) |
|
| 19 | 17 18 | mp1i | |- ( ph -> ( U i^i Ring ) C_ ( U i^i Rng ) ) |
| 20 | 16 19 | eqsstrid | |- ( ph -> ( Ring i^i U ) C_ ( U i^i Rng ) ) |
| 21 | 2 12 1 | rngcbas | |- ( ph -> ( Base ` C ) = ( U i^i Rng ) ) |
| 22 | 20 3 21 | 3sstr4d | |- ( ph -> R C_ ( Base ` C ) ) |
| 23 | 22 | sselda | |- ( ( ph /\ x e. R ) -> x e. ( Base ` C ) ) |
| 24 | 2 12 14 15 23 9 | rngcid | |- ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCat ` U ) ) ` x ) = ( _I |` ( Base ` x ) ) ) |
| 25 | 1 2 3 4 | rhmsubclem2 | |- ( ( ph /\ x e. R /\ x e. R ) -> ( x H x ) = ( x RingHom x ) ) |
| 26 | 25 | 3anidm23 | |- ( ( ph /\ x e. R ) -> ( x H x ) = ( x RingHom x ) ) |
| 27 | 11 24 26 | 3eltr4d | |- ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) ) |