This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014) (Proof shortened by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressress | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) | |
| 2 | simpr1 | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝑊 ∈ V ) | |
| 3 | simpr2 | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) | |
| 4 | eqid | ⊢ ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s 𝐴 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 6 | 4 5 | ressval2 | ⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 7 | 1 2 3 6 | syl3anc | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 8 | inass | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) | |
| 9 | in12 | ⊢ ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) | |
| 10 | 8 9 | eqtri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
| 11 | 4 5 | ressbas | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 12 | 3 11 | syl | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 13 | 12 | ineq2d | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) ) |
| 14 | 10 13 | eqtr2id | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) |
| 15 | 14 | opeq2d | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 = 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) |
| 16 | 7 15 | oveq12d | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) = ( ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 17 | fvex | ⊢ ( Base ‘ 𝑊 ) ∈ V | |
| 18 | 17 | inex2 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ∈ V |
| 19 | setsabs | ⊢ ( ( 𝑊 ∈ V ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ∈ V ) → ( ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) | |
| 20 | 2 18 19 | sylancl | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) 〉 ) sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 21 | 16 20 | eqtrd | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 22 | simpll | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ) | |
| 23 | ovexd | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) ∈ V ) | |
| 24 | simpr3 | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐵 ∈ 𝑌 ) | |
| 25 | eqid | ⊢ ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) | |
| 26 | eqid | ⊢ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) | |
| 27 | 25 26 | ressval2 | ⊢ ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ↾s 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) ) |
| 28 | 22 23 24 27 | syl3anc | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ( 𝑊 ↾s 𝐴 ) sSet 〈 ( Base ‘ ndx ) , ( 𝐵 ∩ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) 〉 ) ) |
| 29 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 30 | sstr | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 ) | |
| 31 | 29 30 | mpan2 | ⊢ ( ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 ) |
| 32 | 1 31 | nsyl | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ¬ ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 33 | inex1g | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
| 34 | 3 33 | syl | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 35 | eqid | ⊢ ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) | |
| 36 | 35 5 | ressval2 | ⊢ ( ( ¬ ( Base ‘ 𝑊 ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ 𝑊 ∈ V ∧ ( 𝐴 ∩ 𝐵 ) ∈ V ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 37 | 32 2 34 36 | syl3anc | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 sSet 〈 ( Base ‘ ndx ) , ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) 〉 ) ) |
| 38 | 21 28 37 | 3eqtr4d | ⊢ ( ( ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 ) ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 39 | 38 | exp31 | ⊢ ( ¬ ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 → ( ¬ ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 40 | ovex | ⊢ ( 𝑊 ↾s 𝐴 ) ∈ V | |
| 41 | 25 26 | ressid2 | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ↾s 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐴 ) ) |
| 42 | 40 41 | mp3an2 | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐴 ) ) |
| 43 | 42 | 3ad2antr3 | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐴 ) ) |
| 44 | in32 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) | |
| 45 | simpr2 | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) | |
| 46 | 45 11 | syl | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ) |
| 47 | simpl | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ) | |
| 48 | 46 47 | eqsstrd | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐵 ) |
| 49 | dfss2 | ⊢ ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐵 ↔ ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) | |
| 50 | 48 49 | sylib | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ∩ 𝐵 ) = ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) |
| 51 | 44 50 | eqtr2id | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) |
| 52 | 51 | oveq2d | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 53 | 5 | ressinbas | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 54 | 45 53 | syl | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 55 | 5 | ressinbas | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ V → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 56 | 45 33 55 | 3syl | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 57 | 52 54 56 | 3eqtr4d | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 58 | 43 57 | eqtrd | ⊢ ( ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 59 | 58 | ex | ⊢ ( ( Base ‘ ( 𝑊 ↾s 𝐴 ) ) ⊆ 𝐵 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 60 | 4 5 | ressid2 | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ) → ( 𝑊 ↾s 𝐴 ) = 𝑊 ) |
| 61 | 60 | 3adant3r3 | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐴 ) = 𝑊 ) |
| 62 | 61 | oveq1d | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s 𝐵 ) ) |
| 63 | inss2 | ⊢ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ ( Base ‘ 𝑊 ) | |
| 64 | simpl | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( Base ‘ 𝑊 ) ⊆ 𝐴 ) | |
| 65 | 63 64 | sstrid | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐴 ) |
| 66 | sseqin2 | ⊢ ( ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) | |
| 67 | 65 66 | sylib | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐴 ∩ ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) |
| 68 | 8 67 | eqtr2id | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) |
| 69 | 68 | oveq2d | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 70 | simpr3 | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐵 ∈ 𝑌 ) | |
| 71 | 5 | ressinbas | ⊢ ( 𝐵 ∈ 𝑌 → ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 72 | 70 71 | syl | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐵 ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 73 | simpr2 | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → 𝐴 ∈ 𝑋 ) | |
| 74 | 73 33 55 | 3syl | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ( 𝑊 ↾s ( ( 𝐴 ∩ 𝐵 ) ∩ ( Base ‘ 𝑊 ) ) ) ) |
| 75 | 69 72 74 | 3eqtr4d | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 76 | 62 75 | eqtrd | ⊢ ( ( ( Base ‘ 𝑊 ) ⊆ 𝐴 ∧ ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 77 | 76 | ex | ⊢ ( ( Base ‘ 𝑊 ) ⊆ 𝐴 → ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 78 | 39 59 77 | pm2.61ii | ⊢ ( ( 𝑊 ∈ V ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 79 | 78 | 3expib | ⊢ ( 𝑊 ∈ V → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 80 | ress0 | ⊢ ( ∅ ↾s 𝐵 ) = ∅ | |
| 81 | reldmress | ⊢ Rel dom ↾s | |
| 82 | 81 | ovprc1 | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s 𝐴 ) = ∅ ) |
| 83 | 82 | oveq1d | ⊢ ( ¬ 𝑊 ∈ V → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( ∅ ↾s 𝐵 ) ) |
| 84 | 81 | ovprc1 | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
| 85 | 80 83 84 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |
| 86 | 85 | a1d | ⊢ ( ¬ 𝑊 ∈ V → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 87 | 79 86 | pm2.61i | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ( 𝑊 ↾s 𝐴 ) ↾s 𝐵 ) = ( 𝑊 ↾s ( 𝐴 ∩ 𝐵 ) ) ) |