This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014) (Proof shortened by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressress | |- ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> -. ( Base ` W ) C_ A ) |
|
| 2 | simpr1 | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> W e. _V ) |
|
| 3 | simpr2 | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> A e. X ) |
|
| 4 | eqid | |- ( W |`s A ) = ( W |`s A ) |
|
| 5 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 6 | 4 5 | ressval2 | |- ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. X ) -> ( W |`s A ) = ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
| 7 | 1 2 3 6 | syl3anc | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
| 8 | inass | |- ( ( A i^i B ) i^i ( Base ` W ) ) = ( A i^i ( B i^i ( Base ` W ) ) ) |
|
| 9 | in12 | |- ( A i^i ( B i^i ( Base ` W ) ) ) = ( B i^i ( A i^i ( Base ` W ) ) ) |
|
| 10 | 8 9 | eqtri | |- ( ( A i^i B ) i^i ( Base ` W ) ) = ( B i^i ( A i^i ( Base ` W ) ) ) |
| 11 | 4 5 | ressbas | |- ( A e. X -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
| 12 | 3 11 | syl | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
| 13 | 12 | ineq2d | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( A i^i ( Base ` W ) ) ) = ( B i^i ( Base ` ( W |`s A ) ) ) ) |
| 14 | 10 13 | eqtr2id | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( Base ` ( W |`s A ) ) ) = ( ( A i^i B ) i^i ( Base ` W ) ) ) |
| 15 | 14 | opeq2d | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. = <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) |
| 16 | 7 15 | oveq12d | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) = ( ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 17 | fvex | |- ( Base ` W ) e. _V |
|
| 18 | 17 | inex2 | |- ( ( A i^i B ) i^i ( Base ` W ) ) e. _V |
| 19 | setsabs | |- ( ( W e. _V /\ ( ( A i^i B ) i^i ( Base ` W ) ) e. _V ) -> ( ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
|
| 20 | 2 18 19 | sylancl | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 21 | 16 20 | eqtrd | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 22 | simpll | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> -. ( Base ` ( W |`s A ) ) C_ B ) |
|
| 23 | ovexd | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) e. _V ) |
|
| 24 | simpr3 | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> B e. Y ) |
|
| 25 | eqid | |- ( ( W |`s A ) |`s B ) = ( ( W |`s A ) |`s B ) |
|
| 26 | eqid | |- ( Base ` ( W |`s A ) ) = ( Base ` ( W |`s A ) ) |
|
| 27 | 25 26 | ressval2 | |- ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ ( W |`s A ) e. _V /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) ) |
| 28 | 22 23 24 27 | syl3anc | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) ) |
| 29 | inss1 | |- ( A i^i B ) C_ A |
|
| 30 | sstr | |- ( ( ( Base ` W ) C_ ( A i^i B ) /\ ( A i^i B ) C_ A ) -> ( Base ` W ) C_ A ) |
|
| 31 | 29 30 | mpan2 | |- ( ( Base ` W ) C_ ( A i^i B ) -> ( Base ` W ) C_ A ) |
| 32 | 1 31 | nsyl | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> -. ( Base ` W ) C_ ( A i^i B ) ) |
| 33 | inex1g | |- ( A e. X -> ( A i^i B ) e. _V ) |
|
| 34 | 3 33 | syl | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i B ) e. _V ) |
| 35 | eqid | |- ( W |`s ( A i^i B ) ) = ( W |`s ( A i^i B ) ) |
|
| 36 | 35 5 | ressval2 | |- ( ( -. ( Base ` W ) C_ ( A i^i B ) /\ W e. _V /\ ( A i^i B ) e. _V ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 37 | 32 2 34 36 | syl3anc | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 38 | 21 28 37 | 3eqtr4d | |- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 39 | 38 | exp31 | |- ( -. ( Base ` ( W |`s A ) ) C_ B -> ( -. ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) ) |
| 40 | ovex | |- ( W |`s A ) e. _V |
|
| 41 | 25 26 | ressid2 | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W |`s A ) e. _V /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s A ) ) |
| 42 | 40 41 | mp3an2 | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s A ) ) |
| 43 | 42 | 3ad2antr3 | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s A ) ) |
| 44 | in32 | |- ( ( A i^i B ) i^i ( Base ` W ) ) = ( ( A i^i ( Base ` W ) ) i^i B ) |
|
| 45 | simpr2 | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> A e. X ) |
|
| 46 | 45 11 | syl | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
| 47 | simpl | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( Base ` ( W |`s A ) ) C_ B ) |
|
| 48 | 46 47 | eqsstrd | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) C_ B ) |
| 49 | dfss2 | |- ( ( A i^i ( Base ` W ) ) C_ B <-> ( ( A i^i ( Base ` W ) ) i^i B ) = ( A i^i ( Base ` W ) ) ) |
|
| 50 | 48 49 | sylib | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( A i^i ( Base ` W ) ) i^i B ) = ( A i^i ( Base ` W ) ) ) |
| 51 | 44 50 | eqtr2id | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) = ( ( A i^i B ) i^i ( Base ` W ) ) ) |
| 52 | 51 | oveq2d | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i ( Base ` W ) ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 53 | 5 | ressinbas | |- ( A e. X -> ( W |`s A ) = ( W |`s ( A i^i ( Base ` W ) ) ) ) |
| 54 | 45 53 | syl | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = ( W |`s ( A i^i ( Base ` W ) ) ) ) |
| 55 | 5 | ressinbas | |- ( ( A i^i B ) e. _V -> ( W |`s ( A i^i B ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 56 | 45 33 55 | 3syl | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i B ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 57 | 52 54 56 | 3eqtr4d | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 58 | 43 57 | eqtrd | |- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 59 | 58 | ex | |- ( ( Base ` ( W |`s A ) ) C_ B -> ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
| 60 | 4 5 | ressid2 | |- ( ( ( Base ` W ) C_ A /\ W e. _V /\ A e. X ) -> ( W |`s A ) = W ) |
| 61 | 60 | 3adant3r3 | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = W ) |
| 62 | 61 | oveq1d | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s B ) ) |
| 63 | inss2 | |- ( B i^i ( Base ` W ) ) C_ ( Base ` W ) |
|
| 64 | simpl | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( Base ` W ) C_ A ) |
|
| 65 | 63 64 | sstrid | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( Base ` W ) ) C_ A ) |
| 66 | sseqin2 | |- ( ( B i^i ( Base ` W ) ) C_ A <-> ( A i^i ( B i^i ( Base ` W ) ) ) = ( B i^i ( Base ` W ) ) ) |
|
| 67 | 65 66 | sylib | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( B i^i ( Base ` W ) ) ) = ( B i^i ( Base ` W ) ) ) |
| 68 | 8 67 | eqtr2id | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( Base ` W ) ) = ( ( A i^i B ) i^i ( Base ` W ) ) ) |
| 69 | 68 | oveq2d | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( B i^i ( Base ` W ) ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 70 | simpr3 | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> B e. Y ) |
|
| 71 | 5 | ressinbas | |- ( B e. Y -> ( W |`s B ) = ( W |`s ( B i^i ( Base ` W ) ) ) ) |
| 72 | 70 71 | syl | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s B ) = ( W |`s ( B i^i ( Base ` W ) ) ) ) |
| 73 | simpr2 | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> A e. X ) |
|
| 74 | 73 33 55 | 3syl | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i B ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 75 | 69 72 74 | 3eqtr4d | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 76 | 62 75 | eqtrd | |- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 77 | 76 | ex | |- ( ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
| 78 | 39 59 77 | pm2.61ii | |- ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 79 | 78 | 3expib | |- ( W e. _V -> ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
| 80 | ress0 | |- ( (/) |`s B ) = (/) |
|
| 81 | reldmress | |- Rel dom |`s |
|
| 82 | 81 | ovprc1 | |- ( -. W e. _V -> ( W |`s A ) = (/) ) |
| 83 | 82 | oveq1d | |- ( -. W e. _V -> ( ( W |`s A ) |`s B ) = ( (/) |`s B ) ) |
| 84 | 81 | ovprc1 | |- ( -. W e. _V -> ( W |`s ( A i^i B ) ) = (/) ) |
| 85 | 80 83 84 | 3eqtr4a | |- ( -. W e. _V -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 86 | 85 | a1d | |- ( -. W e. _V -> ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
| 87 | 79 86 | pm2.61i | |- ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |