This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| Assertion | resmhm2b | ⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| 2 | mhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑆 ∈ Mnd ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑆 ∈ Mnd ) |
| 4 | 1 | submmnd | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → 𝑈 ∈ Mnd ) |
| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑈 ∈ Mnd ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 8 | 6 7 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 10 | 9 | ffnd | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 11 | simplr | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → ran 𝐹 ⊆ 𝑋 ) | |
| 12 | df-f | ⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋 ↔ ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ ran 𝐹 ⊆ 𝑋 ) ) | |
| 13 | 10 11 12 | sylanbrc | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋 ) |
| 14 | 1 | submbas | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 16 | 15 | feq3d | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑋 ↔ 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) ) |
| 17 | 13 16 | mpbid | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ) |
| 18 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 19 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 20 | 6 18 19 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | 20 | 3expb | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 22 | 21 | adantll | ⊢ ( ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 23 | 1 19 | ressplusg | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → ( +g ‘ 𝑇 ) = ( +g ‘ 𝑈 ) ) |
| 24 | 23 | ad3antrrr | ⊢ ( ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( +g ‘ 𝑇 ) = ( +g ‘ 𝑈 ) ) |
| 25 | 24 | oveqd | ⊢ ( ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 | 22 25 | eqtrd | ⊢ ( ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 | 26 | ralrimivva | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 29 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 30 | 28 29 | mhm0 | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 31 | 30 | adantl | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 32 | 1 29 | subm0 | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) → ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑈 ) ) |
| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑈 ) ) |
| 34 | 31 33 | eqtrd | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) |
| 35 | 17 27 34 | 3jca | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) ) |
| 36 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 37 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 38 | eqid | ⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) | |
| 39 | 6 36 18 37 28 38 | ismhm | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd ) ∧ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑈 ) ) ) ) |
| 40 | 3 5 35 39 | syl21anbrc | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) |
| 41 | 1 | resmhm2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
| 42 | 41 | ancoms | ⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
| 43 | 42 | adantlr | ⊢ ( ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
| 44 | 40 43 | impbida | ⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 MndHom 𝑈 ) ) ) |