This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) | |
| Assertion | resmhm | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 MndHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmhm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) | |
| 2 | mhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑇 ∈ Mnd ) | |
| 3 | 1 | submmnd | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → 𝑈 ∈ Mnd ) |
| 4 | 2 3 | anim12ci | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ) |
| 5 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 7 | 5 6 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 8 | 5 | submss | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 9 | fssres | ⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) | |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) |
| 11 | 8 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 12 | 1 5 | ressbas2 | ⊢ ( 𝑋 ⊆ ( Base ‘ 𝑆 ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 14 | 13 | feq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ↔ ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) ) |
| 15 | 10 14 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 16 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) | |
| 17 | 8 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 18 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 19 | 17 18 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 20 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 21 | 17 20 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
| 22 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 23 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 24 | 5 22 23 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 | 16 19 21 24 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 | 22 | submcl | ⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 ) |
| 27 | 26 | 3expb | ⊢ ( ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 ) |
| 28 | 27 | adantll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ 𝑋 ) |
| 29 | 28 | fvresd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
| 30 | fvres | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 31 | fvres | ⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 32 | 30 31 | oveqan12d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 33 | 32 | adantl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 34 | 25 29 33 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 35 | 34 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 36 | 1 22 | ressplusg | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
| 38 | 37 | oveqd | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) |
| 39 | 38 | fveqeq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 40 | 13 39 | raleqbidv | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 41 | 13 40 | raleqbidv | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 42 | 35 41 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ) |
| 43 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 44 | 43 | subm0cl | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) ∈ 𝑋 ) |
| 45 | 44 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) ∈ 𝑋 ) |
| 46 | 45 | fvresd | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑆 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) |
| 47 | 1 43 | subm0 | ⊢ ( 𝑋 ∈ ( SubMnd ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 48 | 47 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑈 ) ) |
| 49 | 48 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑆 ) ) = ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑈 ) ) ) |
| 50 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 51 | 43 50 | mhm0 | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 53 | 46 49 52 | 3eqtr3d | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑇 ) ) |
| 54 | 15 42 53 | 3jca | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑇 ) ) ) |
| 55 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 56 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 57 | eqid | ⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) | |
| 58 | 55 6 56 23 57 50 | ismhm | ⊢ ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 MndHom 𝑇 ) ↔ ( ( 𝑈 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ∀ 𝑦 ∈ ( Base ‘ 𝑈 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑦 ) ) ∧ ( ( 𝐹 ↾ 𝑋 ) ‘ ( 0g ‘ 𝑈 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
| 59 | 4 54 58 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑋 ∈ ( SubMnd ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 MndHom 𝑇 ) ) |