This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This is the core Lemma for refsum2cn : the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | refsum2cnlem1.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| refsum2cnlem1.2 | ⊢ Ⅎ 𝑥 𝐹 | ||
| refsum2cnlem1.3 | ⊢ Ⅎ 𝑥 𝐺 | ||
| refsum2cnlem1.4 | ⊢ Ⅎ 𝑥 𝜑 | ||
| refsum2cnlem1.5 | ⊢ 𝐴 = ( 𝑘 ∈ { 1 , 2 } ↦ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) | ||
| refsum2cnlem1.6 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| refsum2cnlem1.7 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| refsum2cnlem1.8 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| refsum2cnlem1.9 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | refsum2cnlem1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsum2cnlem1.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | refsum2cnlem1.2 | ⊢ Ⅎ 𝑥 𝐹 | |
| 3 | refsum2cnlem1.3 | ⊢ Ⅎ 𝑥 𝐺 | |
| 4 | refsum2cnlem1.4 | ⊢ Ⅎ 𝑥 𝜑 | |
| 5 | refsum2cnlem1.5 | ⊢ 𝐴 = ( 𝑘 ∈ { 1 , 2 } ↦ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) | |
| 6 | refsum2cnlem1.6 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 7 | refsum2cnlem1.7 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 8 | refsum2cnlem1.8 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 9 | refsum2cnlem1.9 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 10 | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘 ∈ { 1 , 2 } ↦ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) | |
| 11 | 5 10 | nfcxfr | ⊢ Ⅎ 𝑘 𝐴 |
| 12 | nfcv | ⊢ Ⅎ 𝑘 1 | |
| 13 | 11 12 | nffv | ⊢ Ⅎ 𝑘 ( 𝐴 ‘ 1 ) |
| 14 | nfcv | ⊢ Ⅎ 𝑘 𝑥 | |
| 15 | 13 14 | nffv | ⊢ Ⅎ 𝑘 ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) |
| 16 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Ⅎ 𝑘 ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) ) |
| 17 | nfcv | ⊢ Ⅎ 𝑘 2 | |
| 18 | 11 17 | nffv | ⊢ Ⅎ 𝑘 ( 𝐴 ‘ 2 ) |
| 19 | 18 14 | nffv | ⊢ Ⅎ 𝑘 ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) |
| 20 | 19 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Ⅎ 𝑘 ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) |
| 21 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℂ ) | |
| 22 | 2cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 2 ∈ ℂ ) | |
| 23 | 1ex | ⊢ 1 ∈ V | |
| 24 | 23 | prid1 | ⊢ 1 ∈ { 1 , 2 } |
| 25 | 8 9 | ifcld | ⊢ ( 𝜑 → if ( 1 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 26 | eqeq1 | ⊢ ( 𝑘 = 1 → ( 𝑘 = 1 ↔ 1 = 1 ) ) | |
| 27 | 26 | ifbid | ⊢ ( 𝑘 = 1 → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) = if ( 1 = 1 , 𝐹 , 𝐺 ) ) |
| 28 | 27 5 | fvmptg | ⊢ ( ( 1 ∈ { 1 , 2 } ∧ if ( 1 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐴 ‘ 1 ) = if ( 1 = 1 , 𝐹 , 𝐺 ) ) |
| 29 | 24 25 28 | sylancr | ⊢ ( 𝜑 → ( 𝐴 ‘ 1 ) = if ( 1 = 1 , 𝐹 , 𝐺 ) ) |
| 30 | eqid | ⊢ 1 = 1 | |
| 31 | 30 | iftruei | ⊢ if ( 1 = 1 , 𝐹 , 𝐺 ) = 𝐹 |
| 32 | 29 31 | eqtrdi | ⊢ ( 𝜑 → ( 𝐴 ‘ 1 ) = 𝐹 ) |
| 33 | 32 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ‘ 1 ) = 𝐹 ) |
| 34 | 33 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 36 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 37 | 35 36 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 38 | 8 37 | syl | ⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 39 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 40 | 7 39 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 41 | 40 | eqcomd | ⊢ ( 𝜑 → ∪ 𝐽 = 𝑋 ) |
| 42 | 6 | unieqi | ⊢ ∪ 𝐾 = ∪ ( topGen ‘ ran (,) ) |
| 43 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 44 | 42 43 | eqtr4i | ⊢ ∪ 𝐾 = ℝ |
| 45 | 44 | a1i | ⊢ ( 𝜑 → ∪ 𝐾 = ℝ ) |
| 46 | 41 45 | feq23d | ⊢ ( 𝜑 → ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ↔ 𝐹 : 𝑋 ⟶ ℝ ) ) |
| 47 | 38 46 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 48 | 47 | anim1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 : 𝑋 ⟶ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
| 49 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 50 | recn | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) | |
| 51 | 48 49 50 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 52 | 34 51 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) ∈ ℂ ) |
| 53 | 2ex | ⊢ 2 ∈ V | |
| 54 | 53 | prid2 | ⊢ 2 ∈ { 1 , 2 } |
| 55 | 8 9 | ifcld | ⊢ ( 𝜑 → if ( 2 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 56 | eqeq1 | ⊢ ( 𝑘 = 2 → ( 𝑘 = 1 ↔ 2 = 1 ) ) | |
| 57 | 56 | ifbid | ⊢ ( 𝑘 = 2 → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) = if ( 2 = 1 , 𝐹 , 𝐺 ) ) |
| 58 | 57 5 | fvmptg | ⊢ ( ( 2 ∈ { 1 , 2 } ∧ if ( 2 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐴 ‘ 2 ) = if ( 2 = 1 , 𝐹 , 𝐺 ) ) |
| 59 | 54 55 58 | sylancr | ⊢ ( 𝜑 → ( 𝐴 ‘ 2 ) = if ( 2 = 1 , 𝐹 , 𝐺 ) ) |
| 60 | 1ne2 | ⊢ 1 ≠ 2 | |
| 61 | 60 | nesymi | ⊢ ¬ 2 = 1 |
| 62 | 61 | iffalsei | ⊢ if ( 2 = 1 , 𝐹 , 𝐺 ) = 𝐺 |
| 63 | 59 62 | eqtrdi | ⊢ ( 𝜑 → ( 𝐴 ‘ 2 ) = 𝐺 ) |
| 64 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ‘ 2 ) = 𝐺 ) |
| 65 | 64 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 66 | 35 36 | cnf | ⊢ ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 67 | 9 66 | syl | ⊢ ( 𝜑 → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 68 | 41 45 | feq23d | ⊢ ( 𝜑 → ( 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ↔ 𝐺 : 𝑋 ⟶ ℝ ) ) |
| 69 | 67 68 | mpbid | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℝ ) |
| 70 | 69 | anim1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 : 𝑋 ⟶ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
| 71 | ffvelcdm | ⊢ ( ( 𝐺 : 𝑋 ⟶ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) | |
| 72 | recn | ⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ ℝ → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) | |
| 73 | 70 71 72 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 74 | 65 73 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ∈ ℂ ) |
| 75 | 60 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 1 ≠ 2 ) |
| 76 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 1 ) ) | |
| 77 | 76 | fveq1d | ⊢ ( 𝑘 = 1 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) ) |
| 78 | 77 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 = 1 ) → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) ) |
| 79 | fveq2 | ⊢ ( 𝑘 = 2 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 2 ) ) | |
| 80 | 79 | fveq1d | ⊢ ( 𝑘 = 2 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) |
| 81 | 80 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 = 2 ) → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) |
| 82 | 16 20 21 22 52 74 75 78 81 | sumpair | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ { 1 , 2 } ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) + ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) ) |
| 83 | 34 65 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) + ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 84 | 82 83 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ { 1 , 2 } ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 85 | 4 84 | mpteq2da | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ { 1 , 2 } ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 86 | prfi | ⊢ { 1 , 2 } ∈ Fin | |
| 87 | 86 | a1i | ⊢ ( 𝜑 → { 1 , 2 } ∈ Fin ) |
| 88 | eqid | ⊢ 𝑋 = 𝑋 | |
| 89 | 88 | ax-gen | ⊢ ∀ 𝑥 𝑋 = 𝑋 |
| 90 | nfcv | ⊢ Ⅎ 𝑥 𝑘 | |
| 91 | 1 90 | nffv | ⊢ Ⅎ 𝑥 ( 𝐴 ‘ 𝑘 ) |
| 92 | 91 2 | nfeq | ⊢ Ⅎ 𝑥 ( 𝐴 ‘ 𝑘 ) = 𝐹 |
| 93 | fveq1 | ⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐹 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 94 | 93 | a1d | ⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐹 → ( 𝑥 ∈ 𝑋 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 95 | 92 94 | ralrimi | ⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐹 → ∀ 𝑥 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 96 | mpteq12f | ⊢ ( ( ∀ 𝑥 𝑋 = 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 97 | 89 95 96 | sylancr | ⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐹 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 98 | 97 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 99 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 100 | 6 99 | eqeltri | ⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
| 101 | 100 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℝ ) ) |
| 102 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋 ⟶ ℝ ) | |
| 103 | 7 101 8 102 | syl3anc | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 104 | 103 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 105 | 2 | dffn5f | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 106 | 104 105 | sylib | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 107 | 106 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 108 | 98 107 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = 𝐹 ) |
| 109 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 110 | 108 109 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 111 | 110 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 112 | 91 3 | nfeq | ⊢ Ⅎ 𝑥 ( 𝐴 ‘ 𝑘 ) = 𝐺 |
| 113 | fveq1 | ⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐺 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 114 | 113 | a1d | ⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐺 → ( 𝑥 ∈ 𝑋 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 115 | 112 114 | ralrimi | ⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐺 → ∀ 𝑥 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 116 | mpteq12f | ⊢ ( ( ∀ 𝑥 𝑋 = 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 117 | 89 115 116 | sylancr | ⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐺 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 118 | 117 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 119 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ∧ 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐺 : 𝑋 ⟶ ℝ ) | |
| 120 | 7 101 9 119 | syl3anc | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℝ ) |
| 121 | 120 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
| 122 | 3 | dffn5f | ⊢ ( 𝐺 Fn 𝑋 ↔ 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 123 | 121 122 | sylib | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 124 | 123 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 125 | 118 124 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = 𝐺 ) |
| 126 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 127 | 125 126 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 128 | 127 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 129 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → 𝑘 ∈ { 1 , 2 } ) | |
| 130 | 8 9 | ifcld | ⊢ ( 𝜑 → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 131 | 130 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 132 | 5 | fvmpt2 | ⊢ ( ( 𝑘 ∈ { 1 , 2 } ∧ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐴 ‘ 𝑘 ) = if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) |
| 133 | 129 131 132 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → ( 𝐴 ‘ 𝑘 ) = if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) |
| 134 | iftrue | ⊢ ( 𝑘 = 1 → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) = 𝐹 ) | |
| 135 | 133 134 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 1 ) → ( 𝐴 ‘ 𝑘 ) = 𝐹 ) |
| 136 | 135 | orcd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 1 ) → ( ( 𝐴 ‘ 𝑘 ) = 𝐹 ∨ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) ) |
| 137 | 133 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → ( 𝐴 ‘ 𝑘 ) = if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) |
| 138 | neeq2 | ⊢ ( 𝑘 = 2 → ( 1 ≠ 𝑘 ↔ 1 ≠ 2 ) ) | |
| 139 | 60 138 | mpbiri | ⊢ ( 𝑘 = 2 → 1 ≠ 𝑘 ) |
| 140 | 139 | necomd | ⊢ ( 𝑘 = 2 → 𝑘 ≠ 1 ) |
| 141 | 140 | neneqd | ⊢ ( 𝑘 = 2 → ¬ 𝑘 = 1 ) |
| 142 | 141 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → ¬ 𝑘 = 1 ) |
| 143 | 142 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) = 𝐺 ) |
| 144 | 137 143 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → ( 𝐴 ‘ 𝑘 ) = 𝐺 ) |
| 145 | 144 | olcd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → ( ( 𝐴 ‘ 𝑘 ) = 𝐹 ∨ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) ) |
| 146 | elpri | ⊢ ( 𝑘 ∈ { 1 , 2 } → ( 𝑘 = 1 ∨ 𝑘 = 2 ) ) | |
| 147 | 146 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → ( 𝑘 = 1 ∨ 𝑘 = 2 ) ) |
| 148 | 136 145 147 | mpjaodan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → ( ( 𝐴 ‘ 𝑘 ) = 𝐹 ∨ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) ) |
| 149 | 111 128 148 | mpjaodan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 150 | 4 6 7 87 149 | refsumcn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ { 1 , 2 } ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 151 | 85 150 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |