This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | refsum2cn.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| refsum2cn.2 | ⊢ Ⅎ 𝑥 𝐺 | ||
| refsum2cn.3 | ⊢ Ⅎ 𝑥 𝜑 | ||
| refsum2cn.4 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| refsum2cn.5 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| refsum2cn.6 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| refsum2cn.7 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | refsum2cn | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsum2cn.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | refsum2cn.2 | ⊢ Ⅎ 𝑥 𝐺 | |
| 3 | refsum2cn.3 | ⊢ Ⅎ 𝑥 𝜑 | |
| 4 | refsum2cn.4 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 5 | refsum2cn.5 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 6 | refsum2cn.6 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 7 | refsum2cn.7 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 { 1 , 2 } | |
| 9 | nfv | ⊢ Ⅎ 𝑥 𝑘 = 1 | |
| 10 | 9 1 2 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑘 = 1 , 𝐹 , 𝐺 ) |
| 11 | 8 10 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘 ∈ { 1 , 2 } ↦ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) |
| 12 | eqid | ⊢ ( 𝑘 ∈ { 1 , 2 } ↦ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) = ( 𝑘 ∈ { 1 , 2 } ↦ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) | |
| 13 | 11 1 2 3 12 4 5 6 7 | refsum2cnlem1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |