This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of two distinct complex values. The class expression for A and B normally contain free variable k to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumpair.1 | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐷 ) | |
| sumpair.3 | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐸 ) | ||
| sumupair.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| sumupair.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| sumupair.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
| sumupair.4 | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) | ||
| sumupair.5 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| sumupair.8 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐶 = 𝐷 ) | ||
| sumupair.9 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐸 ) | ||
| Assertion | sumpair | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumpair.1 | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐷 ) | |
| 2 | sumpair.3 | ⊢ ( 𝜑 → Ⅎ 𝑘 𝐸 ) | |
| 3 | sumupair.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | sumupair.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 5 | sumupair.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
| 6 | sumupair.4 | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) | |
| 7 | sumupair.5 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 8 | sumupair.8 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐶 = 𝐷 ) | |
| 9 | sumupair.9 | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐸 ) | |
| 10 | disjsn2 | ⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) | |
| 11 | 7 10 | syl | ⊢ ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
| 12 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 14 | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin ) |
| 16 | elpri | ⊢ ( 𝑘 ∈ { 𝐴 , 𝐵 } → ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) | |
| 17 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐷 ∈ ℂ ) |
| 18 | 8 17 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐶 ∈ ℂ ) |
| 19 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐸 ∈ ℂ ) |
| 20 | 9 19 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 ∈ ℂ ) |
| 21 | 18 20 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 22 | 16 21 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝐶 ∈ ℂ ) |
| 23 | 11 13 15 22 | fsumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) ) |
| 24 | nfv | ⊢ Ⅎ 𝑘 𝜑 | |
| 25 | 1 24 8 3 5 | sumsnd | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
| 26 | 2 24 9 4 6 | sumsnd | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
| 27 | 25 26 | oveq12d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 + 𝐸 ) ) |
| 28 | 23 27 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) ) |