This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This is the core Lemma for refsum2cn : the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | refsum2cnlem1.1 | |- F/_ x A |
|
| refsum2cnlem1.2 | |- F/_ x F |
||
| refsum2cnlem1.3 | |- F/_ x G |
||
| refsum2cnlem1.4 | |- F/ x ph |
||
| refsum2cnlem1.5 | |- A = ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) |
||
| refsum2cnlem1.6 | |- K = ( topGen ` ran (,) ) |
||
| refsum2cnlem1.7 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| refsum2cnlem1.8 | |- ( ph -> F e. ( J Cn K ) ) |
||
| refsum2cnlem1.9 | |- ( ph -> G e. ( J Cn K ) ) |
||
| Assertion | refsum2cnlem1 | |- ( ph -> ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsum2cnlem1.1 | |- F/_ x A |
|
| 2 | refsum2cnlem1.2 | |- F/_ x F |
|
| 3 | refsum2cnlem1.3 | |- F/_ x G |
|
| 4 | refsum2cnlem1.4 | |- F/ x ph |
|
| 5 | refsum2cnlem1.5 | |- A = ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) |
|
| 6 | refsum2cnlem1.6 | |- K = ( topGen ` ran (,) ) |
|
| 7 | refsum2cnlem1.7 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 8 | refsum2cnlem1.8 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 9 | refsum2cnlem1.9 | |- ( ph -> G e. ( J Cn K ) ) |
|
| 10 | nfmpt1 | |- F/_ k ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) |
|
| 11 | 5 10 | nfcxfr | |- F/_ k A |
| 12 | nfcv | |- F/_ k 1 |
|
| 13 | 11 12 | nffv | |- F/_ k ( A ` 1 ) |
| 14 | nfcv | |- F/_ k x |
|
| 15 | 13 14 | nffv | |- F/_ k ( ( A ` 1 ) ` x ) |
| 16 | 15 | a1i | |- ( ( ph /\ x e. X ) -> F/_ k ( ( A ` 1 ) ` x ) ) |
| 17 | nfcv | |- F/_ k 2 |
|
| 18 | 11 17 | nffv | |- F/_ k ( A ` 2 ) |
| 19 | 18 14 | nffv | |- F/_ k ( ( A ` 2 ) ` x ) |
| 20 | 19 | a1i | |- ( ( ph /\ x e. X ) -> F/_ k ( ( A ` 2 ) ` x ) ) |
| 21 | 1cnd | |- ( ( ph /\ x e. X ) -> 1 e. CC ) |
|
| 22 | 2cnd | |- ( ( ph /\ x e. X ) -> 2 e. CC ) |
|
| 23 | 1ex | |- 1 e. _V |
|
| 24 | 23 | prid1 | |- 1 e. { 1 , 2 } |
| 25 | 8 9 | ifcld | |- ( ph -> if ( 1 = 1 , F , G ) e. ( J Cn K ) ) |
| 26 | eqeq1 | |- ( k = 1 -> ( k = 1 <-> 1 = 1 ) ) |
|
| 27 | 26 | ifbid | |- ( k = 1 -> if ( k = 1 , F , G ) = if ( 1 = 1 , F , G ) ) |
| 28 | 27 5 | fvmptg | |- ( ( 1 e. { 1 , 2 } /\ if ( 1 = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` 1 ) = if ( 1 = 1 , F , G ) ) |
| 29 | 24 25 28 | sylancr | |- ( ph -> ( A ` 1 ) = if ( 1 = 1 , F , G ) ) |
| 30 | eqid | |- 1 = 1 |
|
| 31 | 30 | iftruei | |- if ( 1 = 1 , F , G ) = F |
| 32 | 29 31 | eqtrdi | |- ( ph -> ( A ` 1 ) = F ) |
| 33 | 32 | adantr | |- ( ( ph /\ x e. X ) -> ( A ` 1 ) = F ) |
| 34 | 33 | fveq1d | |- ( ( ph /\ x e. X ) -> ( ( A ` 1 ) ` x ) = ( F ` x ) ) |
| 35 | eqid | |- U. J = U. J |
|
| 36 | eqid | |- U. K = U. K |
|
| 37 | 35 36 | cnf | |- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
| 38 | 8 37 | syl | |- ( ph -> F : U. J --> U. K ) |
| 39 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 40 | 7 39 | syl | |- ( ph -> X = U. J ) |
| 41 | 40 | eqcomd | |- ( ph -> U. J = X ) |
| 42 | 6 | unieqi | |- U. K = U. ( topGen ` ran (,) ) |
| 43 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 44 | 42 43 | eqtr4i | |- U. K = RR |
| 45 | 44 | a1i | |- ( ph -> U. K = RR ) |
| 46 | 41 45 | feq23d | |- ( ph -> ( F : U. J --> U. K <-> F : X --> RR ) ) |
| 47 | 38 46 | mpbid | |- ( ph -> F : X --> RR ) |
| 48 | 47 | anim1i | |- ( ( ph /\ x e. X ) -> ( F : X --> RR /\ x e. X ) ) |
| 49 | ffvelcdm | |- ( ( F : X --> RR /\ x e. X ) -> ( F ` x ) e. RR ) |
|
| 50 | recn | |- ( ( F ` x ) e. RR -> ( F ` x ) e. CC ) |
|
| 51 | 48 49 50 | 3syl | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) |
| 52 | 34 51 | eqeltrd | |- ( ( ph /\ x e. X ) -> ( ( A ` 1 ) ` x ) e. CC ) |
| 53 | 2ex | |- 2 e. _V |
|
| 54 | 53 | prid2 | |- 2 e. { 1 , 2 } |
| 55 | 8 9 | ifcld | |- ( ph -> if ( 2 = 1 , F , G ) e. ( J Cn K ) ) |
| 56 | eqeq1 | |- ( k = 2 -> ( k = 1 <-> 2 = 1 ) ) |
|
| 57 | 56 | ifbid | |- ( k = 2 -> if ( k = 1 , F , G ) = if ( 2 = 1 , F , G ) ) |
| 58 | 57 5 | fvmptg | |- ( ( 2 e. { 1 , 2 } /\ if ( 2 = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` 2 ) = if ( 2 = 1 , F , G ) ) |
| 59 | 54 55 58 | sylancr | |- ( ph -> ( A ` 2 ) = if ( 2 = 1 , F , G ) ) |
| 60 | 1ne2 | |- 1 =/= 2 |
|
| 61 | 60 | nesymi | |- -. 2 = 1 |
| 62 | 61 | iffalsei | |- if ( 2 = 1 , F , G ) = G |
| 63 | 59 62 | eqtrdi | |- ( ph -> ( A ` 2 ) = G ) |
| 64 | 63 | adantr | |- ( ( ph /\ x e. X ) -> ( A ` 2 ) = G ) |
| 65 | 64 | fveq1d | |- ( ( ph /\ x e. X ) -> ( ( A ` 2 ) ` x ) = ( G ` x ) ) |
| 66 | 35 36 | cnf | |- ( G e. ( J Cn K ) -> G : U. J --> U. K ) |
| 67 | 9 66 | syl | |- ( ph -> G : U. J --> U. K ) |
| 68 | 41 45 | feq23d | |- ( ph -> ( G : U. J --> U. K <-> G : X --> RR ) ) |
| 69 | 67 68 | mpbid | |- ( ph -> G : X --> RR ) |
| 70 | 69 | anim1i | |- ( ( ph /\ x e. X ) -> ( G : X --> RR /\ x e. X ) ) |
| 71 | ffvelcdm | |- ( ( G : X --> RR /\ x e. X ) -> ( G ` x ) e. RR ) |
|
| 72 | recn | |- ( ( G ` x ) e. RR -> ( G ` x ) e. CC ) |
|
| 73 | 70 71 72 | 3syl | |- ( ( ph /\ x e. X ) -> ( G ` x ) e. CC ) |
| 74 | 65 73 | eqeltrd | |- ( ( ph /\ x e. X ) -> ( ( A ` 2 ) ` x ) e. CC ) |
| 75 | 60 | a1i | |- ( ( ph /\ x e. X ) -> 1 =/= 2 ) |
| 76 | fveq2 | |- ( k = 1 -> ( A ` k ) = ( A ` 1 ) ) |
|
| 77 | 76 | fveq1d | |- ( k = 1 -> ( ( A ` k ) ` x ) = ( ( A ` 1 ) ` x ) ) |
| 78 | 77 | adantl | |- ( ( ( ph /\ x e. X ) /\ k = 1 ) -> ( ( A ` k ) ` x ) = ( ( A ` 1 ) ` x ) ) |
| 79 | fveq2 | |- ( k = 2 -> ( A ` k ) = ( A ` 2 ) ) |
|
| 80 | 79 | fveq1d | |- ( k = 2 -> ( ( A ` k ) ` x ) = ( ( A ` 2 ) ` x ) ) |
| 81 | 80 | adantl | |- ( ( ( ph /\ x e. X ) /\ k = 2 ) -> ( ( A ` k ) ` x ) = ( ( A ` 2 ) ` x ) ) |
| 82 | 16 20 21 22 52 74 75 78 81 | sumpair | |- ( ( ph /\ x e. X ) -> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) = ( ( ( A ` 1 ) ` x ) + ( ( A ` 2 ) ` x ) ) ) |
| 83 | 34 65 | oveq12d | |- ( ( ph /\ x e. X ) -> ( ( ( A ` 1 ) ` x ) + ( ( A ` 2 ) ` x ) ) = ( ( F ` x ) + ( G ` x ) ) ) |
| 84 | 82 83 | eqtrd | |- ( ( ph /\ x e. X ) -> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) = ( ( F ` x ) + ( G ` x ) ) ) |
| 85 | 4 84 | mpteq2da | |- ( ph -> ( x e. X |-> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) ) = ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) ) |
| 86 | prfi | |- { 1 , 2 } e. Fin |
|
| 87 | 86 | a1i | |- ( ph -> { 1 , 2 } e. Fin ) |
| 88 | eqid | |- X = X |
|
| 89 | 88 | ax-gen | |- A. x X = X |
| 90 | nfcv | |- F/_ x k |
|
| 91 | 1 90 | nffv | |- F/_ x ( A ` k ) |
| 92 | 91 2 | nfeq | |- F/ x ( A ` k ) = F |
| 93 | fveq1 | |- ( ( A ` k ) = F -> ( ( A ` k ) ` x ) = ( F ` x ) ) |
|
| 94 | 93 | a1d | |- ( ( A ` k ) = F -> ( x e. X -> ( ( A ` k ) ` x ) = ( F ` x ) ) ) |
| 95 | 92 94 | ralrimi | |- ( ( A ` k ) = F -> A. x e. X ( ( A ` k ) ` x ) = ( F ` x ) ) |
| 96 | mpteq12f | |- ( ( A. x X = X /\ A. x e. X ( ( A ` k ) ` x ) = ( F ` x ) ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) ) |
|
| 97 | 89 95 96 | sylancr | |- ( ( A ` k ) = F -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) ) |
| 98 | 97 | adantl | |- ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) ) |
| 99 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 100 | 6 99 | eqeltri | |- K e. ( TopOn ` RR ) |
| 101 | 100 | a1i | |- ( ph -> K e. ( TopOn ` RR ) ) |
| 102 | cnf2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ F e. ( J Cn K ) ) -> F : X --> RR ) |
|
| 103 | 7 101 8 102 | syl3anc | |- ( ph -> F : X --> RR ) |
| 104 | 103 | ffnd | |- ( ph -> F Fn X ) |
| 105 | 2 | dffn5f | |- ( F Fn X <-> F = ( x e. X |-> ( F ` x ) ) ) |
| 106 | 104 105 | sylib | |- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
| 107 | 106 | adantr | |- ( ( ph /\ ( A ` k ) = F ) -> F = ( x e. X |-> ( F ` x ) ) ) |
| 108 | 98 107 | eqtr4d | |- ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = F ) |
| 109 | 8 | adantr | |- ( ( ph /\ ( A ` k ) = F ) -> F e. ( J Cn K ) ) |
| 110 | 108 109 | eqeltrd | |- ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 111 | 110 | adantlr | |- ( ( ( ph /\ k e. { 1 , 2 } ) /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 112 | 91 3 | nfeq | |- F/ x ( A ` k ) = G |
| 113 | fveq1 | |- ( ( A ` k ) = G -> ( ( A ` k ) ` x ) = ( G ` x ) ) |
|
| 114 | 113 | a1d | |- ( ( A ` k ) = G -> ( x e. X -> ( ( A ` k ) ` x ) = ( G ` x ) ) ) |
| 115 | 112 114 | ralrimi | |- ( ( A ` k ) = G -> A. x e. X ( ( A ` k ) ` x ) = ( G ` x ) ) |
| 116 | mpteq12f | |- ( ( A. x X = X /\ A. x e. X ( ( A ` k ) ` x ) = ( G ` x ) ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) ) |
|
| 117 | 89 115 116 | sylancr | |- ( ( A ` k ) = G -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) ) |
| 118 | 117 | adantl | |- ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) ) |
| 119 | cnf2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ G e. ( J Cn K ) ) -> G : X --> RR ) |
|
| 120 | 7 101 9 119 | syl3anc | |- ( ph -> G : X --> RR ) |
| 121 | 120 | ffnd | |- ( ph -> G Fn X ) |
| 122 | 3 | dffn5f | |- ( G Fn X <-> G = ( x e. X |-> ( G ` x ) ) ) |
| 123 | 121 122 | sylib | |- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
| 124 | 123 | adantr | |- ( ( ph /\ ( A ` k ) = G ) -> G = ( x e. X |-> ( G ` x ) ) ) |
| 125 | 118 124 | eqtr4d | |- ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = G ) |
| 126 | 9 | adantr | |- ( ( ph /\ ( A ` k ) = G ) -> G e. ( J Cn K ) ) |
| 127 | 125 126 | eqeltrd | |- ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 128 | 127 | adantlr | |- ( ( ( ph /\ k e. { 1 , 2 } ) /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 129 | simpr | |- ( ( ph /\ k e. { 1 , 2 } ) -> k e. { 1 , 2 } ) |
|
| 130 | 8 9 | ifcld | |- ( ph -> if ( k = 1 , F , G ) e. ( J Cn K ) ) |
| 131 | 130 | adantr | |- ( ( ph /\ k e. { 1 , 2 } ) -> if ( k = 1 , F , G ) e. ( J Cn K ) ) |
| 132 | 5 | fvmpt2 | |- ( ( k e. { 1 , 2 } /\ if ( k = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` k ) = if ( k = 1 , F , G ) ) |
| 133 | 129 131 132 | syl2anc | |- ( ( ph /\ k e. { 1 , 2 } ) -> ( A ` k ) = if ( k = 1 , F , G ) ) |
| 134 | iftrue | |- ( k = 1 -> if ( k = 1 , F , G ) = F ) |
|
| 135 | 133 134 | sylan9eq | |- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 1 ) -> ( A ` k ) = F ) |
| 136 | 135 | orcd | |- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 1 ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) |
| 137 | 133 | adantr | |- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( A ` k ) = if ( k = 1 , F , G ) ) |
| 138 | neeq2 | |- ( k = 2 -> ( 1 =/= k <-> 1 =/= 2 ) ) |
|
| 139 | 60 138 | mpbiri | |- ( k = 2 -> 1 =/= k ) |
| 140 | 139 | necomd | |- ( k = 2 -> k =/= 1 ) |
| 141 | 140 | neneqd | |- ( k = 2 -> -. k = 1 ) |
| 142 | 141 | adantl | |- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> -. k = 1 ) |
| 143 | 142 | iffalsed | |- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> if ( k = 1 , F , G ) = G ) |
| 144 | 137 143 | eqtrd | |- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( A ` k ) = G ) |
| 145 | 144 | olcd | |- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) |
| 146 | elpri | |- ( k e. { 1 , 2 } -> ( k = 1 \/ k = 2 ) ) |
|
| 147 | 146 | adantl | |- ( ( ph /\ k e. { 1 , 2 } ) -> ( k = 1 \/ k = 2 ) ) |
| 148 | 136 145 147 | mpjaodan | |- ( ( ph /\ k e. { 1 , 2 } ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) |
| 149 | 111 128 148 | mpjaodan | |- ( ( ph /\ k e. { 1 , 2 } ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 150 | 4 6 7 87 149 | refsumcn | |- ( ph -> ( x e. X |-> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 151 | 85 150 | eqeltrrd | |- ( ph -> ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) e. ( J Cn K ) ) |