This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpteq12f | ⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝐴 = 𝐶 | |
| 2 | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 | |
| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) |
| 4 | nfv | ⊢ Ⅎ 𝑦 ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) | |
| 5 | rspa | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐷 ) | |
| 6 | 5 | eqeq2d | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝐵 ↔ 𝑦 = 𝐷 ) ) |
| 7 | 6 | pm5.32da | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
| 8 | sp | ⊢ ( ∀ 𝑥 𝐴 = 𝐶 → 𝐴 = 𝐶 ) | |
| 9 | 8 | eleq2d | ⊢ ( ∀ 𝑥 𝐴 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ) |
| 10 | 9 | anbi1d | ⊢ ( ∀ 𝑥 𝐴 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 11 | 7 10 | sylan9bbr | ⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 12 | 3 4 11 | opabbid | ⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) } ) |
| 13 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
| 14 | df-mpt | ⊢ ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) } | |
| 15 | 12 13 14 | 3eqtr4g | ⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) |