This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recgt1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ∧ ( 1 / 𝐴 ) < 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 | ⊢ 0 < 1 | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | 1re | ⊢ 1 ∈ ℝ | |
| 4 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) | |
| 5 | 2 3 4 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
| 6 | 1 5 | mpani | ⊢ ( 𝐴 ∈ ℝ → ( 1 < 𝐴 → 0 < 𝐴 ) ) |
| 7 | 6 | imdistani | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 8 | recgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
| 10 | recgt1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < 𝐴 ↔ ( 1 / 𝐴 ) < 1 ) ) | |
| 11 | 10 | biimpa | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 1 < 𝐴 ) → ( 1 / 𝐴 ) < 1 ) |
| 12 | 7 11 | sylancom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 1 / 𝐴 ) < 1 ) |
| 13 | 9 12 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ∧ ( 1 / 𝐴 ) < 1 ) ) |