This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mappsrpr.2 | ⊢ 𝐶 ∈ R | |
| Assertion | mappsrpr | ⊢ ( ( 𝐶 +R -1R ) <R ( 𝐶 +R [ 〈 𝐴 , 1P 〉 ] ~R ) ↔ 𝐴 ∈ P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mappsrpr.2 | ⊢ 𝐶 ∈ R | |
| 2 | df-m1r | ⊢ -1R = [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R | |
| 3 | 2 | breq1i | ⊢ ( -1R <R [ 〈 𝐴 , 1P 〉 ] ~R ↔ [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R <R [ 〈 𝐴 , 1P 〉 ] ~R ) |
| 4 | ltsrpr | ⊢ ( [ 〈 1P , ( 1P +P 1P ) 〉 ] ~R <R [ 〈 𝐴 , 1P 〉 ] ~R ↔ ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) ) | |
| 5 | 3 4 | bitri | ⊢ ( -1R <R [ 〈 𝐴 , 1P 〉 ] ~R ↔ ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) ) |
| 6 | ltasr | ⊢ ( 𝐶 ∈ R → ( -1R <R [ 〈 𝐴 , 1P 〉 ] ~R ↔ ( 𝐶 +R -1R ) <R ( 𝐶 +R [ 〈 𝐴 , 1P 〉 ] ~R ) ) ) | |
| 7 | 1 6 | ax-mp | ⊢ ( -1R <R [ 〈 𝐴 , 1P 〉 ] ~R ↔ ( 𝐶 +R -1R ) <R ( 𝐶 +R [ 〈 𝐴 , 1P 〉 ] ~R ) ) |
| 8 | ltrelpr | ⊢ <P ⊆ ( P × P ) | |
| 9 | 8 | brel | ⊢ ( ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) → ( ( 1P +P 1P ) ∈ P ∧ ( ( 1P +P 1P ) +P 𝐴 ) ∈ P ) ) |
| 10 | dmplp | ⊢ dom +P = ( P × P ) | |
| 11 | 0npr | ⊢ ¬ ∅ ∈ P | |
| 12 | 10 11 | ndmovrcl | ⊢ ( ( ( 1P +P 1P ) +P 𝐴 ) ∈ P → ( ( 1P +P 1P ) ∈ P ∧ 𝐴 ∈ P ) ) |
| 13 | 12 | simprd | ⊢ ( ( ( 1P +P 1P ) +P 𝐴 ) ∈ P → 𝐴 ∈ P ) |
| 14 | 9 13 | simpl2im | ⊢ ( ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) → 𝐴 ∈ P ) |
| 15 | 1pr | ⊢ 1P ∈ P | |
| 16 | addclpr | ⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → ( 1P +P 1P ) ∈ P ) | |
| 17 | 15 15 16 | mp2an | ⊢ ( 1P +P 1P ) ∈ P |
| 18 | ltaddpr | ⊢ ( ( ( 1P +P 1P ) ∈ P ∧ 𝐴 ∈ P ) → ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) ) | |
| 19 | 17 18 | mpan | ⊢ ( 𝐴 ∈ P → ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) ) |
| 20 | 14 19 | impbii | ⊢ ( ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 𝐴 ) ↔ 𝐴 ∈ P ) |
| 21 | 5 7 20 | 3bitr3i | ⊢ ( ( 𝐶 +R -1R ) <R ( 𝐶 +R [ 〈 𝐴 , 1P 〉 ] ~R ) ↔ 𝐴 ∈ P ) |