This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reasinsin | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neghalfpire | ⊢ - ( π / 2 ) ∈ ℝ | |
| 2 | 1 | rexri | ⊢ - ( π / 2 ) ∈ ℝ* |
| 3 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 4 | 3 | rexri | ⊢ ( π / 2 ) ∈ ℝ* |
| 5 | pirp | ⊢ π ∈ ℝ+ | |
| 6 | rphalfcl | ⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) | |
| 7 | 5 6 | ax-mp | ⊢ ( π / 2 ) ∈ ℝ+ |
| 8 | rpgt0 | ⊢ ( ( π / 2 ) ∈ ℝ+ → 0 < ( π / 2 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ 0 < ( π / 2 ) |
| 10 | lt0neg2 | ⊢ ( ( π / 2 ) ∈ ℝ → ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) ) | |
| 11 | 3 10 | ax-mp | ⊢ ( 0 < ( π / 2 ) ↔ - ( π / 2 ) < 0 ) |
| 12 | 9 11 | mpbi | ⊢ - ( π / 2 ) < 0 |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | 1 13 3 | lttri | ⊢ ( ( - ( π / 2 ) < 0 ∧ 0 < ( π / 2 ) ) → - ( π / 2 ) < ( π / 2 ) ) |
| 15 | 12 9 14 | mp2an | ⊢ - ( π / 2 ) < ( π / 2 ) |
| 16 | 1 3 15 | ltleii | ⊢ - ( π / 2 ) ≤ ( π / 2 ) |
| 17 | prunioo | ⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ∧ - ( π / 2 ) ≤ ( π / 2 ) ) → ( ( - ( π / 2 ) (,) ( π / 2 ) ) ∪ { - ( π / 2 ) , ( π / 2 ) } ) = ( - ( π / 2 ) [,] ( π / 2 ) ) ) | |
| 18 | 2 4 16 17 | mp3an | ⊢ ( ( - ( π / 2 ) (,) ( π / 2 ) ) ∪ { - ( π / 2 ) , ( π / 2 ) } ) = ( - ( π / 2 ) [,] ( π / 2 ) ) |
| 19 | 18 | eleq2i | ⊢ ( 𝐴 ∈ ( ( - ( π / 2 ) (,) ( π / 2 ) ) ∪ { - ( π / 2 ) , ( π / 2 ) } ) ↔ 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 20 | elun | ⊢ ( 𝐴 ∈ ( ( - ( π / 2 ) (,) ( π / 2 ) ) ∪ { - ( π / 2 ) , ( π / 2 ) } ) ↔ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∨ 𝐴 ∈ { - ( π / 2 ) , ( π / 2 ) } ) ) | |
| 21 | 19 20 | bitr3i | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∨ 𝐴 ∈ { - ( π / 2 ) , ( π / 2 ) } ) ) |
| 22 | elioore | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 𝐴 ∈ ℝ ) | |
| 23 | 22 | recnd | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 𝐴 ∈ ℂ ) |
| 24 | 22 | rered | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( ℜ ‘ 𝐴 ) = 𝐴 ) |
| 25 | id | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) | |
| 26 | 24 25 | eqeltrd | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |
| 27 | asinsin | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = 𝐴 ) | |
| 28 | 23 26 27 | syl2anc | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = 𝐴 ) |
| 29 | elpri | ⊢ ( 𝐴 ∈ { - ( π / 2 ) , ( π / 2 ) } → ( 𝐴 = - ( π / 2 ) ∨ 𝐴 = ( π / 2 ) ) ) | |
| 30 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 31 | asinneg | ⊢ ( 1 ∈ ℂ → ( arcsin ‘ - 1 ) = - ( arcsin ‘ 1 ) ) | |
| 32 | 30 31 | ax-mp | ⊢ ( arcsin ‘ - 1 ) = - ( arcsin ‘ 1 ) |
| 33 | asin1 | ⊢ ( arcsin ‘ 1 ) = ( π / 2 ) | |
| 34 | 33 | negeqi | ⊢ - ( arcsin ‘ 1 ) = - ( π / 2 ) |
| 35 | 32 34 | eqtri | ⊢ ( arcsin ‘ - 1 ) = - ( π / 2 ) |
| 36 | fveq2 | ⊢ ( 𝐴 = - ( π / 2 ) → ( sin ‘ 𝐴 ) = ( sin ‘ - ( π / 2 ) ) ) | |
| 37 | 3 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 38 | sinneg | ⊢ ( ( π / 2 ) ∈ ℂ → ( sin ‘ - ( π / 2 ) ) = - ( sin ‘ ( π / 2 ) ) ) | |
| 39 | 37 38 | ax-mp | ⊢ ( sin ‘ - ( π / 2 ) ) = - ( sin ‘ ( π / 2 ) ) |
| 40 | sinhalfpi | ⊢ ( sin ‘ ( π / 2 ) ) = 1 | |
| 41 | 40 | negeqi | ⊢ - ( sin ‘ ( π / 2 ) ) = - 1 |
| 42 | 39 41 | eqtri | ⊢ ( sin ‘ - ( π / 2 ) ) = - 1 |
| 43 | 36 42 | eqtrdi | ⊢ ( 𝐴 = - ( π / 2 ) → ( sin ‘ 𝐴 ) = - 1 ) |
| 44 | 43 | fveq2d | ⊢ ( 𝐴 = - ( π / 2 ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = ( arcsin ‘ - 1 ) ) |
| 45 | id | ⊢ ( 𝐴 = - ( π / 2 ) → 𝐴 = - ( π / 2 ) ) | |
| 46 | 35 44 45 | 3eqtr4a | ⊢ ( 𝐴 = - ( π / 2 ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = 𝐴 ) |
| 47 | fveq2 | ⊢ ( 𝐴 = ( π / 2 ) → ( sin ‘ 𝐴 ) = ( sin ‘ ( π / 2 ) ) ) | |
| 48 | 47 40 | eqtrdi | ⊢ ( 𝐴 = ( π / 2 ) → ( sin ‘ 𝐴 ) = 1 ) |
| 49 | 48 | fveq2d | ⊢ ( 𝐴 = ( π / 2 ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = ( arcsin ‘ 1 ) ) |
| 50 | id | ⊢ ( 𝐴 = ( π / 2 ) → 𝐴 = ( π / 2 ) ) | |
| 51 | 33 49 50 | 3eqtr4a | ⊢ ( 𝐴 = ( π / 2 ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = 𝐴 ) |
| 52 | 46 51 | jaoi | ⊢ ( ( 𝐴 = - ( π / 2 ) ∨ 𝐴 = ( π / 2 ) ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = 𝐴 ) |
| 53 | 29 52 | syl | ⊢ ( 𝐴 ∈ { - ( π / 2 ) , ( π / 2 ) } → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = 𝐴 ) |
| 54 | 28 53 | jaoi | ⊢ ( ( 𝐴 ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ∨ 𝐴 ∈ { - ( π / 2 ) , ( π / 2 ) } ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = 𝐴 ) |
| 55 | 21 54 | sylbi | ⊢ ( 𝐴 ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( arcsin ‘ ( sin ‘ 𝐴 ) ) = 𝐴 ) |