This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arcsine of 1 is _pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asin1 | ⊢ ( arcsin ‘ 1 ) = ( π / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | asinval | ⊢ ( 1 ∈ ℂ → ( arcsin ‘ 1 ) = ( - i · ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( arcsin ‘ 1 ) = ( - i · ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) ) |
| 4 | ax-icn | ⊢ i ∈ ℂ | |
| 5 | 4 | addridi | ⊢ ( i + 0 ) = i |
| 6 | 4 | mulridi | ⊢ ( i · 1 ) = i |
| 7 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 8 | 7 | oveq2i | ⊢ ( 1 − ( 1 ↑ 2 ) ) = ( 1 − 1 ) |
| 9 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 10 | 8 9 | eqtri | ⊢ ( 1 − ( 1 ↑ 2 ) ) = 0 |
| 11 | 10 | fveq2i | ⊢ ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) = ( √ ‘ 0 ) |
| 12 | sqrt0 | ⊢ ( √ ‘ 0 ) = 0 | |
| 13 | 11 12 | eqtri | ⊢ ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) = 0 |
| 14 | 6 13 | oveq12i | ⊢ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) = ( i + 0 ) |
| 15 | efhalfpi | ⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i | |
| 16 | 5 14 15 | 3eqtr4i | ⊢ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) = ( exp ‘ ( i · ( π / 2 ) ) ) |
| 17 | 16 | fveq2i | ⊢ ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) = ( log ‘ ( exp ‘ ( i · ( π / 2 ) ) ) ) |
| 18 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 19 | 18 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 20 | 4 19 | mulcli | ⊢ ( i · ( π / 2 ) ) ∈ ℂ |
| 21 | pipos | ⊢ 0 < π | |
| 22 | pire | ⊢ π ∈ ℝ | |
| 23 | lt0neg2 | ⊢ ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( 0 < π ↔ - π < 0 ) |
| 25 | 21 24 | mpbi | ⊢ - π < 0 |
| 26 | pirp | ⊢ π ∈ ℝ+ | |
| 27 | rphalfcl | ⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) | |
| 28 | 26 27 | ax-mp | ⊢ ( π / 2 ) ∈ ℝ+ |
| 29 | rpgt0 | ⊢ ( ( π / 2 ) ∈ ℝ+ → 0 < ( π / 2 ) ) | |
| 30 | 28 29 | ax-mp | ⊢ 0 < ( π / 2 ) |
| 31 | 22 | renegcli | ⊢ - π ∈ ℝ |
| 32 | 0re | ⊢ 0 ∈ ℝ | |
| 33 | 31 32 18 | lttri | ⊢ ( ( - π < 0 ∧ 0 < ( π / 2 ) ) → - π < ( π / 2 ) ) |
| 34 | 25 30 33 | mp2an | ⊢ - π < ( π / 2 ) |
| 35 | 20 | addlidi | ⊢ ( 0 + ( i · ( π / 2 ) ) ) = ( i · ( π / 2 ) ) |
| 36 | 35 | fveq2i | ⊢ ( ℑ ‘ ( 0 + ( i · ( π / 2 ) ) ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) |
| 37 | 32 18 | crimi | ⊢ ( ℑ ‘ ( 0 + ( i · ( π / 2 ) ) ) ) = ( π / 2 ) |
| 38 | 36 37 | eqtr3i | ⊢ ( ℑ ‘ ( i · ( π / 2 ) ) ) = ( π / 2 ) |
| 39 | 34 38 | breqtrri | ⊢ - π < ( ℑ ‘ ( i · ( π / 2 ) ) ) |
| 40 | rphalflt | ⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) | |
| 41 | 26 40 | ax-mp | ⊢ ( π / 2 ) < π |
| 42 | 18 22 41 | ltleii | ⊢ ( π / 2 ) ≤ π |
| 43 | 38 42 | eqbrtri | ⊢ ( ℑ ‘ ( i · ( π / 2 ) ) ) ≤ π |
| 44 | ellogrn | ⊢ ( ( i · ( π / 2 ) ) ∈ ran log ↔ ( ( i · ( π / 2 ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( i · ( π / 2 ) ) ) ∧ ( ℑ ‘ ( i · ( π / 2 ) ) ) ≤ π ) ) | |
| 45 | 20 39 43 44 | mpbir3an | ⊢ ( i · ( π / 2 ) ) ∈ ran log |
| 46 | logef | ⊢ ( ( i · ( π / 2 ) ) ∈ ran log → ( log ‘ ( exp ‘ ( i · ( π / 2 ) ) ) ) = ( i · ( π / 2 ) ) ) | |
| 47 | 45 46 | ax-mp | ⊢ ( log ‘ ( exp ‘ ( i · ( π / 2 ) ) ) ) = ( i · ( π / 2 ) ) |
| 48 | 17 47 | eqtri | ⊢ ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) = ( i · ( π / 2 ) ) |
| 49 | 48 | oveq2i | ⊢ ( - i · ( log ‘ ( ( i · 1 ) + ( √ ‘ ( 1 − ( 1 ↑ 2 ) ) ) ) ) ) = ( - i · ( i · ( π / 2 ) ) ) |
| 50 | 4 4 | mulneg1i | ⊢ ( - i · i ) = - ( i · i ) |
| 51 | ixi | ⊢ ( i · i ) = - 1 | |
| 52 | 51 | negeqi | ⊢ - ( i · i ) = - - 1 |
| 53 | negneg1e1 | ⊢ - - 1 = 1 | |
| 54 | 50 52 53 | 3eqtri | ⊢ ( - i · i ) = 1 |
| 55 | 54 | oveq1i | ⊢ ( ( - i · i ) · ( π / 2 ) ) = ( 1 · ( π / 2 ) ) |
| 56 | negicn | ⊢ - i ∈ ℂ | |
| 57 | 56 4 19 | mulassi | ⊢ ( ( - i · i ) · ( π / 2 ) ) = ( - i · ( i · ( π / 2 ) ) ) |
| 58 | 55 57 | eqtr3i | ⊢ ( 1 · ( π / 2 ) ) = ( - i · ( i · ( π / 2 ) ) ) |
| 59 | 19 | mullidi | ⊢ ( 1 · ( π / 2 ) ) = ( π / 2 ) |
| 60 | 58 59 | eqtr3i | ⊢ ( - i · ( i · ( π / 2 ) ) ) = ( π / 2 ) |
| 61 | 3 49 60 | 3eqtri | ⊢ ( arcsin ‘ 1 ) = ( π / 2 ) |