This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between sine and arcsine. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinsinb | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( arcsin ‘ 𝐴 ) = 𝐵 ↔ ( sin ‘ 𝐵 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sinasin | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = 𝐴 ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = 𝐴 ) |
| 3 | fveqeq2 | ⊢ ( ( arcsin ‘ 𝐴 ) = 𝐵 → ( ( sin ‘ ( arcsin ‘ 𝐴 ) ) = 𝐴 ↔ ( sin ‘ 𝐵 ) = 𝐴 ) ) | |
| 4 | 2 3 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( arcsin ‘ 𝐴 ) = 𝐵 → ( sin ‘ 𝐵 ) = 𝐴 ) ) |
| 5 | asinsin | ⊢ ( ( 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arcsin ‘ ( sin ‘ 𝐵 ) ) = 𝐵 ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arcsin ‘ ( sin ‘ 𝐵 ) ) = 𝐵 ) |
| 7 | fveqeq2 | ⊢ ( ( sin ‘ 𝐵 ) = 𝐴 → ( ( arcsin ‘ ( sin ‘ 𝐵 ) ) = 𝐵 ↔ ( arcsin ‘ 𝐴 ) = 𝐵 ) ) | |
| 8 | 6 7 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( sin ‘ 𝐵 ) = 𝐴 → ( arcsin ‘ 𝐴 ) = 𝐵 ) ) |
| 9 | 4 8 | impbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( arcsin ‘ 𝐴 ) = 𝐵 ↔ ( sin ‘ 𝐵 ) = 𝐴 ) ) |