This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reasinsin | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neghalfpire | |- -u ( _pi / 2 ) e. RR |
|
| 2 | 1 | rexri | |- -u ( _pi / 2 ) e. RR* |
| 3 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 4 | 3 | rexri | |- ( _pi / 2 ) e. RR* |
| 5 | pirp | |- _pi e. RR+ |
|
| 6 | rphalfcl | |- ( _pi e. RR+ -> ( _pi / 2 ) e. RR+ ) |
|
| 7 | 5 6 | ax-mp | |- ( _pi / 2 ) e. RR+ |
| 8 | rpgt0 | |- ( ( _pi / 2 ) e. RR+ -> 0 < ( _pi / 2 ) ) |
|
| 9 | 7 8 | ax-mp | |- 0 < ( _pi / 2 ) |
| 10 | lt0neg2 | |- ( ( _pi / 2 ) e. RR -> ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) ) |
|
| 11 | 3 10 | ax-mp | |- ( 0 < ( _pi / 2 ) <-> -u ( _pi / 2 ) < 0 ) |
| 12 | 9 11 | mpbi | |- -u ( _pi / 2 ) < 0 |
| 13 | 0re | |- 0 e. RR |
|
| 14 | 1 13 3 | lttri | |- ( ( -u ( _pi / 2 ) < 0 /\ 0 < ( _pi / 2 ) ) -> -u ( _pi / 2 ) < ( _pi / 2 ) ) |
| 15 | 12 9 14 | mp2an | |- -u ( _pi / 2 ) < ( _pi / 2 ) |
| 16 | 1 3 15 | ltleii | |- -u ( _pi / 2 ) <_ ( _pi / 2 ) |
| 17 | prunioo | |- ( ( -u ( _pi / 2 ) e. RR* /\ ( _pi / 2 ) e. RR* /\ -u ( _pi / 2 ) <_ ( _pi / 2 ) ) -> ( ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) u. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) = ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 18 | 2 4 16 17 | mp3an | |- ( ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) u. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) = ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
| 19 | 18 | eleq2i | |- ( A e. ( ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) u. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) <-> A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 20 | elun | |- ( A e. ( ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) u. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) <-> ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) \/ A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) ) |
|
| 21 | 19 20 | bitr3i | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) \/ A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) ) |
| 22 | elioore | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) |
|
| 23 | 22 | recnd | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. CC ) |
| 24 | 22 | rered | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( Re ` A ) = A ) |
| 25 | id | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
|
| 26 | 24 25 | eqeltrd | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 27 | asinsin | |- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |
|
| 28 | 23 26 27 | syl2anc | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |
| 29 | elpri | |- ( A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } -> ( A = -u ( _pi / 2 ) \/ A = ( _pi / 2 ) ) ) |
|
| 30 | ax-1cn | |- 1 e. CC |
|
| 31 | asinneg | |- ( 1 e. CC -> ( arcsin ` -u 1 ) = -u ( arcsin ` 1 ) ) |
|
| 32 | 30 31 | ax-mp | |- ( arcsin ` -u 1 ) = -u ( arcsin ` 1 ) |
| 33 | asin1 | |- ( arcsin ` 1 ) = ( _pi / 2 ) |
|
| 34 | 33 | negeqi | |- -u ( arcsin ` 1 ) = -u ( _pi / 2 ) |
| 35 | 32 34 | eqtri | |- ( arcsin ` -u 1 ) = -u ( _pi / 2 ) |
| 36 | fveq2 | |- ( A = -u ( _pi / 2 ) -> ( sin ` A ) = ( sin ` -u ( _pi / 2 ) ) ) |
|
| 37 | 3 | recni | |- ( _pi / 2 ) e. CC |
| 38 | sinneg | |- ( ( _pi / 2 ) e. CC -> ( sin ` -u ( _pi / 2 ) ) = -u ( sin ` ( _pi / 2 ) ) ) |
|
| 39 | 37 38 | ax-mp | |- ( sin ` -u ( _pi / 2 ) ) = -u ( sin ` ( _pi / 2 ) ) |
| 40 | sinhalfpi | |- ( sin ` ( _pi / 2 ) ) = 1 |
|
| 41 | 40 | negeqi | |- -u ( sin ` ( _pi / 2 ) ) = -u 1 |
| 42 | 39 41 | eqtri | |- ( sin ` -u ( _pi / 2 ) ) = -u 1 |
| 43 | 36 42 | eqtrdi | |- ( A = -u ( _pi / 2 ) -> ( sin ` A ) = -u 1 ) |
| 44 | 43 | fveq2d | |- ( A = -u ( _pi / 2 ) -> ( arcsin ` ( sin ` A ) ) = ( arcsin ` -u 1 ) ) |
| 45 | id | |- ( A = -u ( _pi / 2 ) -> A = -u ( _pi / 2 ) ) |
|
| 46 | 35 44 45 | 3eqtr4a | |- ( A = -u ( _pi / 2 ) -> ( arcsin ` ( sin ` A ) ) = A ) |
| 47 | fveq2 | |- ( A = ( _pi / 2 ) -> ( sin ` A ) = ( sin ` ( _pi / 2 ) ) ) |
|
| 48 | 47 40 | eqtrdi | |- ( A = ( _pi / 2 ) -> ( sin ` A ) = 1 ) |
| 49 | 48 | fveq2d | |- ( A = ( _pi / 2 ) -> ( arcsin ` ( sin ` A ) ) = ( arcsin ` 1 ) ) |
| 50 | id | |- ( A = ( _pi / 2 ) -> A = ( _pi / 2 ) ) |
|
| 51 | 33 49 50 | 3eqtr4a | |- ( A = ( _pi / 2 ) -> ( arcsin ` ( sin ` A ) ) = A ) |
| 52 | 46 51 | jaoi | |- ( ( A = -u ( _pi / 2 ) \/ A = ( _pi / 2 ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |
| 53 | 29 52 | syl | |- ( A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } -> ( arcsin ` ( sin ` A ) ) = A ) |
| 54 | 28 53 | jaoi | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) \/ A e. { -u ( _pi / 2 ) , ( _pi / 2 ) } ) -> ( arcsin ` ( sin ` A ) ) = A ) |
| 55 | 21 54 | sylbi | |- ( A e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( arcsin ` ( sin ` A ) ) = A ) |