This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of Jech p. 72. Also a special case of Theorem 7V(b) of Enderton p. 204. (Contributed by NM, 12-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| Assertion | rankval4 | ⊢ ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1b.1 | ⊢ 𝐴 ∈ V | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 𝑅1 | |
| 4 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) | |
| 5 | 3 4 | nffv | ⊢ Ⅎ 𝑥 ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
| 6 | 2 5 | dfssf | ⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 7 | rankid | ⊢ 𝑥 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) |
| 9 | ssiun2 | ⊢ ( 𝑥 ∈ 𝐴 → suc ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) | |
| 10 | rankon | ⊢ ( rank ‘ 𝑥 ) ∈ On | |
| 11 | 10 | onsuci | ⊢ suc ( rank ‘ 𝑥 ) ∈ On |
| 12 | 11 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On |
| 13 | iunon | ⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) → ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) | |
| 14 | 1 12 13 | mp2an | ⊢ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On |
| 15 | r1ord3 | ⊢ ( ( suc ( rank ‘ 𝑥 ) ∈ On ∧ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ) → ( suc ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) | |
| 16 | 11 14 15 | mp2an | ⊢ ( suc ( rank ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
| 17 | 9 16 | syl | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
| 18 | 17 | sseld | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑥 ) ) → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
| 19 | 8 18 | mpi | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
| 20 | 6 19 | mpgbir | ⊢ 𝐴 ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) |
| 21 | fvex | ⊢ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ∈ V | |
| 22 | 21 | rankss | ⊢ ( 𝐴 ⊆ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ) |
| 23 | 20 22 | ax-mp | ⊢ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) |
| 24 | r1ord3 | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On ∧ 𝑦 ∈ On ) → ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 → ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) ) ) | |
| 25 | 14 24 | mpan | ⊢ ( 𝑦 ∈ On → ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 → ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 26 | 25 | ss2rabi | ⊢ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ⊆ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } |
| 27 | intss | ⊢ ( { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ⊆ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } → ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ⊆ ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } ) | |
| 28 | 26 27 | ax-mp | ⊢ ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ⊆ ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } |
| 29 | rankval2 | ⊢ ( ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ∈ V → ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) = ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } ) | |
| 30 | 21 29 | ax-mp | ⊢ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) = ∩ { 𝑦 ∈ On ∣ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ⊆ ( 𝑅1 ‘ 𝑦 ) } |
| 31 | intmin | ⊢ ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ∈ On → ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) | |
| 32 | 14 31 | ax-mp | ⊢ ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
| 33 | 32 | eqcomi | ⊢ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) = ∩ { 𝑦 ∈ On ∣ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝑦 } |
| 34 | 28 30 33 | 3sstr4i | ⊢ ( rank ‘ ( 𝑅1 ‘ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ) ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
| 35 | 23 34 | sstri | ⊢ ( rank ‘ 𝐴 ) ⊆ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |
| 36 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) | |
| 37 | 1 | rankel | ⊢ ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) |
| 38 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 39 | 10 38 | onsucssi | ⊢ ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) |
| 40 | 37 39 | sylib | ⊢ ( 𝑥 ∈ 𝐴 → suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ) |
| 41 | 36 40 | mprgbir | ⊢ ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) |
| 42 | 35 41 | eqssi | ⊢ ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 suc ( rank ‘ 𝑥 ) |